Research on the Application of Machine Learning Algorithms in Credit Risk Assessment of Minor Enterprises

CONVERTER Pub Date : 2021-07-10 DOI:10.17762/converter.220
Huichao Mi
{"title":"Research on the Application of Machine Learning Algorithms in Credit Risk Assessment of Minor Enterprises","authors":"Huichao Mi","doi":"10.17762/converter.220","DOIUrl":null,"url":null,"abstract":"Under the influence of COVID-19, minor enterprises, especially the manufacturing industry, are facing greater financial pressure and the possibility of non-performing loans is increasing. It is very important for financial institutions to reduce financial risks while providing financial support for minor enterprises to promote industrial development and economic recovery. In order to understand the function of machine learning algorithms in predicting enterprise credit risk, the research designs five models, including Logistic Regression, Decision Tree, Naïve Bayesian, Support Vector Machine and Deep Neural Network, and adopts SMOTE and Undersampling to process imbalanced data. Experiments show that machine learning algorithms have high accuracy for both large-scale data and small-scale data.","PeriodicalId":10707,"journal":{"name":"CONVERTER","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONVERTER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/converter.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under the influence of COVID-19, minor enterprises, especially the manufacturing industry, are facing greater financial pressure and the possibility of non-performing loans is increasing. It is very important for financial institutions to reduce financial risks while providing financial support for minor enterprises to promote industrial development and economic recovery. In order to understand the function of machine learning algorithms in predicting enterprise credit risk, the research designs five models, including Logistic Regression, Decision Tree, Naïve Bayesian, Support Vector Machine and Deep Neural Network, and adopts SMOTE and Undersampling to process imbalanced data. Experiments show that machine learning algorithms have high accuracy for both large-scale data and small-scale data.
机器学习算法在中小企业信用风险评估中的应用研究
受新冠肺炎疫情影响,中小企业尤其是制造业面临更大的资金压力,出现不良贷款的可能性越来越大。金融机构在为中小企业提供金融支持的同时降低金融风险,对促进产业发展和经济复苏具有十分重要的意义。为了了解机器学习算法在企业信用风险预测中的作用,本研究设计了Logistic回归、决策树、Naïve贝叶斯、支持向量机和深度神经网络5个模型,并采用SMOTE和欠采样对不平衡数据进行处理。实验表明,机器学习算法对大规模数据和小规模数据都有很高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信