{"title":"Effect of Friction Stir Process Parameters on Mechanical Properties of Al/Eggshell/SiC Composite Material","authors":"Anas Islam, V. Dwivedi, S. Dwivedi","doi":"10.18280/ACSM.450107","DOIUrl":null,"url":null,"abstract":"Received: 26 November 2020 Accepted: 1 February 2021 The rise in pollution is a serious matter of concern for all nations. Industries are mainly responsible for damaging the balance of the cycle of pollution. In this paper, the mechanical properties of Aluminum have been enhanced by reinforcing it with eggshell wastes and SiC as reinforcement particles. Ball-milling technique has been applied for up to 75 hours for making the densities of Aluminum, Eggshell and SiC equal. The prime focus of this work is to improve the hardness value of Aluminium-based final composite material. Friction Stir Process (FSP) technique has been used to develop the composite and the driving parameters of FSP like rotational speed, transverse speed etc. are optimized with the help of the Box-Behnken Design approach. The optimized value of rotation speed was 966.14 rpm as well as transverse speed was 23.18 mm/min. Hardness and tensile strength of composite developed at an optimum combination of parameters were found to be 72.2 BHN and 194.48 MPa respectively. Results showed that tensile strength and hardness were enhanced by about 44.05% and 64.09% respectively.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"27 1","pages":"51-57"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ACSM.450107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Received: 26 November 2020 Accepted: 1 February 2021 The rise in pollution is a serious matter of concern for all nations. Industries are mainly responsible for damaging the balance of the cycle of pollution. In this paper, the mechanical properties of Aluminum have been enhanced by reinforcing it with eggshell wastes and SiC as reinforcement particles. Ball-milling technique has been applied for up to 75 hours for making the densities of Aluminum, Eggshell and SiC equal. The prime focus of this work is to improve the hardness value of Aluminium-based final composite material. Friction Stir Process (FSP) technique has been used to develop the composite and the driving parameters of FSP like rotational speed, transverse speed etc. are optimized with the help of the Box-Behnken Design approach. The optimized value of rotation speed was 966.14 rpm as well as transverse speed was 23.18 mm/min. Hardness and tensile strength of composite developed at an optimum combination of parameters were found to be 72.2 BHN and 194.48 MPa respectively. Results showed that tensile strength and hardness were enhanced by about 44.05% and 64.09% respectively.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.