Fuel consumption and emission reduction by using a CVT in series with conventional multi-speed transmission

Q3 Engineering
Jack Walker, I. Huerta, C. Oglieve, S. R. Bewsher, M. Mohammadpour
{"title":"Fuel consumption and emission reduction by using a CVT in series with conventional multi-speed transmission","authors":"Jack Walker, I. Huerta, C. Oglieve, S. R. Bewsher, M. Mohammadpour","doi":"10.1504/IJPT.2019.099632","DOIUrl":null,"url":null,"abstract":"Fuel economy is a growing concern for both manufacturers within the automotive sector and consumers. Increasing government legislation is driving towards greener vehicles with reduced CO2 and NOx emissions and greater fuel economy, especially within urban environments. Manufacturers use new technologies in their powertrain systems to tackle these problems. This paper simulates and evaluates the performance of using a half toroidal CVT in series with a conventional multi-speed transmission, by analysing different shifting strategies to optimise fuel consumption and NOx emissions over the NEDC using this novel approach. The results show an 8.83% increase in fuel economy and up to an 11.34% reduction in NOx emissions is possible using this arrangement. The introduction of CVT adds a further 1.18% increase in fuel economy and 3.59% decrease in NOx emissions. The paper concludes that this novel arrangement should be considered by automotive manufacturers as a solution for improvements to powertrain technology.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPT.2019.099632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel economy is a growing concern for both manufacturers within the automotive sector and consumers. Increasing government legislation is driving towards greener vehicles with reduced CO2 and NOx emissions and greater fuel economy, especially within urban environments. Manufacturers use new technologies in their powertrain systems to tackle these problems. This paper simulates and evaluates the performance of using a half toroidal CVT in series with a conventional multi-speed transmission, by analysing different shifting strategies to optimise fuel consumption and NOx emissions over the NEDC using this novel approach. The results show an 8.83% increase in fuel economy and up to an 11.34% reduction in NOx emissions is possible using this arrangement. The introduction of CVT adds a further 1.18% increase in fuel economy and 3.59% decrease in NOx emissions. The paper concludes that this novel arrangement should be considered by automotive manufacturers as a solution for improvements to powertrain technology.
无级变速器与传统多速变速器串联使用可降低油耗和排放
燃油经济性是汽车制造商和消费者日益关注的问题。越来越多的政府立法正在推动更环保的汽车,减少二氧化碳和氮氧化物排放,提高燃油经济性,特别是在城市环境中。制造商在他们的动力系统中使用新技术来解决这些问题。本文模拟和评估了半环形无级变速器与传统多速变速器串联使用的性能,通过分析不同的换挡策略来优化NEDC上的油耗和氮氧化物排放。结果表明,使用这种配置,燃油经济性可提高8.83%,氮氧化物排放量可减少11.34%。CVT的引入使燃油经济性进一步提高了1.18%,氮氧化物排放量降低了3.59%。本文的结论是,这种新颖的安排应该被汽车制造商视为改进动力总成技术的一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信