{"title":"Experimental Detection of the CNO Cycle","authors":"M. Misiaszek","doi":"10.5506/aphyspolbsupp.15.3-a24","DOIUrl":null,"url":null,"abstract":"Borexino recently reported the first experimental evidence for a CNO neutrino. Since this process accounts for only about 1% of the Sun’s total energy production, the associated neutrino flux is remarkably low compared to that of the pp chain, the dominant hydrogen-burning process. This experimental evidence for the existence of CNO neutrinos was obtained using a highly radio-pure Borexino liquid scintillator. Improvements in the thermal stabilization of the detector over the last five years have allowed us to exploit a method of constraining the rate of 210 Bi background. Since the CNO cycle is dominant in massive stars, this result is the first experimental evidence of a major stellar hydrogen-to-helium conversion mechanism in the Universe","PeriodicalId":39158,"journal":{"name":"Acta Physica Polonica B, Proceedings Supplement","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B, Proceedings Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/aphyspolbsupp.15.3-a24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Borexino recently reported the first experimental evidence for a CNO neutrino. Since this process accounts for only about 1% of the Sun’s total energy production, the associated neutrino flux is remarkably low compared to that of the pp chain, the dominant hydrogen-burning process. This experimental evidence for the existence of CNO neutrinos was obtained using a highly radio-pure Borexino liquid scintillator. Improvements in the thermal stabilization of the detector over the last five years have allowed us to exploit a method of constraining the rate of 210 Bi background. Since the CNO cycle is dominant in massive stars, this result is the first experimental evidence of a major stellar hydrogen-to-helium conversion mechanism in the Universe