Fabrication of Ultrasmall Si Encapsulated in Silicon Dioxide and Silicon Nitride as Alternative to Impurity Doping

M. Frentzen, Michail Michailow, K. Ran, N. Wilck, J. Mayer, Sean C. Smith, D. König, J. Knoch
{"title":"Fabrication of Ultrasmall Si Encapsulated in Silicon Dioxide and Silicon Nitride as Alternative to Impurity Doping","authors":"M. Frentzen, Michail Michailow, K. Ran, N. Wilck, J. Mayer, Sean C. Smith, D. König, J. Knoch","doi":"10.1002/pssa.202300066","DOIUrl":null,"url":null,"abstract":"Further miniaturization of complementary metal oxide semiconductor devices based on impurity‐doped semiconductors is limited due to statistical fluctuation of the impurity concentration in very small volumes and dopant deactivation, increasing the resistance and power consumption. Based on density functional theory calculations and backed by experimental data, the nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) has been described recently. It explains the structure shift of low‐doped single‐crystalline Si nanowells (Si‐NWs) with thicknesses ≤3 nm embedded in SiO2 (Si3N4) toward n‐type (p‐type) behavior. The influence of the anions is on the scale of a few nanometers, allowing for very steep p–n junctions without the drawbacks of impurity doping. The process to fabricate crystalline silicon (c‐Si) NWs embedded in SiO2 and Si3N4, starting with silicon on insulator (SOI) across 15 × 15 mm2 samples, is described. Four possible methods to fabricate Si‐NWs by thinning down single‐crystalline top‐Si of an SOI substrate are evaluated in terms of reproducibility and surface roughness.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Further miniaturization of complementary metal oxide semiconductor devices based on impurity‐doped semiconductors is limited due to statistical fluctuation of the impurity concentration in very small volumes and dopant deactivation, increasing the resistance and power consumption. Based on density functional theory calculations and backed by experimental data, the nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) has been described recently. It explains the structure shift of low‐doped single‐crystalline Si nanowells (Si‐NWs) with thicknesses ≤3 nm embedded in SiO2 (Si3N4) toward n‐type (p‐type) behavior. The influence of the anions is on the scale of a few nanometers, allowing for very steep p–n junctions without the drawbacks of impurity doping. The process to fabricate crystalline silicon (c‐Si) NWs embedded in SiO2 and Si3N4, starting with silicon on insulator (SOI) across 15 × 15 mm2 samples, is described. Four possible methods to fabricate Si‐NWs by thinning down single‐crystalline top‐Si of an SOI substrate are evaluated in terms of reproducibility and surface roughness.
二氧化硅和氮化硅包封超小硅替代杂质掺杂的制备
基于杂质掺杂半导体的互补金属氧化物半导体器件的进一步小型化受到限制,因为在非常小的体积内杂质浓度的统计波动和掺杂的失活,增加了电阻和功耗。基于密度泛函理论计算和实验数据的支持,最近描述了阴离子在表面引起的纳米级电子结构位移(NESSIAS)。它解释了嵌入SiO2 (Si3N4)中厚度≤3nm的低掺杂单晶Si纳米阱(Si - NWs)向n型(p型)行为的结构转变。阴离子的影响是在几纳米的尺度上,允许非常陡峭的p-n结而没有杂质掺杂的缺点。描述了从15 × 15 mm2样品的绝缘体上硅(SOI)开始,在SiO2和Si3N4中嵌入晶体硅(c‐Si) NWs的工艺。通过稀释SOI衬底的单晶顶部Si来制备Si - NWs的四种可能方法在再现性和表面粗糙度方面进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信