Computation of the Exact Fisher Information Matrix of a Multiple Input Single Output Time Series Models

Emilie Epeka Mbambe, Angèle Yule Sotazo, Jacques Sabiti Kiseta
{"title":"Computation of the Exact Fisher Information Matrix of a Multiple Input Single Output Time Series Models","authors":"Emilie Epeka Mbambe, Angèle Yule Sotazo, Jacques Sabiti Kiseta","doi":"10.47285/isr.v2i2.93","DOIUrl":null,"url":null,"abstract":"Klein, Mélard, and Zahaf (1998) have proposed the computation of the exact Fisher information matrix of a large class of Gaussian time series models called the single-input-single-output (SISO) model, includes dynamic regression with autocorrelated errors and the transfer function model, with autoregressive moving average errors. For computing the Fisher information matrix of a SISO model, they introduced an algorithm based on a combination of two computational procedures: recursions for the covariance matrix of the derivatives of the state vector with respect to the parameters and the fast Kalman filter recursions used in the evaluation of the likelihood function. In this paper, we propose a generalization of this method for computing the Fisher information matrix of a MISO model.","PeriodicalId":81558,"journal":{"name":"International science review series","volume":"482 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International science review series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47285/isr.v2i2.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Klein, Mélard, and Zahaf (1998) have proposed the computation of the exact Fisher information matrix of a large class of Gaussian time series models called the single-input-single-output (SISO) model, includes dynamic regression with autocorrelated errors and the transfer function model, with autoregressive moving average errors. For computing the Fisher information matrix of a SISO model, they introduced an algorithm based on a combination of two computational procedures: recursions for the covariance matrix of the derivatives of the state vector with respect to the parameters and the fast Kalman filter recursions used in the evaluation of the likelihood function. In this paper, we propose a generalization of this method for computing the Fisher information matrix of a MISO model.
多输入单输出时间序列模型精确Fisher信息矩阵的计算
Klein, m和Zahaf(1998)提出了一大类高斯时间序列模型的精确Fisher信息矩阵的计算,称为单输入-单输出(SISO)模型,包括具有自相关误差的动态回归模型和具有自回归移动平均误差的传递函数模型。为了计算SISO模型的Fisher信息矩阵,他们引入了一种基于两种计算过程组合的算法:状态向量的导数相对于参数的协方差矩阵的递归,以及用于评估似然函数的快速卡尔曼滤波递归。本文将该方法推广到MISO模型的Fisher信息矩阵的计算中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信