{"title":"An Upper Bound for the w-Weak Global Dimension of Pullbacks","authors":"Jin Xie, Gaohua Tang","doi":"10.1142/s1005386721000535","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000535","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].
设[公式:见文]是具有恒等的交换环,[公式:见文]是[公式:见文]的理想环。引入并研究了因子环的[公式:见文]-弱整体维数[公式:见文]。设[公式:见文]是[公式:见文]的[公式:见文]的[公式:见文]的链接延伸,我们还引入[公式:见文]的[公式:见文]的[公式:见文]-弱全局维度[公式:见文]。我们证明了[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是一个字段,而[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是[Formula: see text]。作为一个应用,我们给出了[公式:见文]-笛卡尔方形的弱全局维数[公式:见文]的上界。更准确地说,如果[公式:见文本]是[公式:见文本]-链接在[公式:见文本]之上,那么[公式:见文本]。更进一步,对于米尔诺平方[公式:见文],我们得到[公式:见文]。
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.