An Upper Bound for the w-Weak Global Dimension of Pullbacks

Pub Date : 2021-11-08 DOI:10.1142/s1005386721000535
Jin Xie, Gaohua Tang
{"title":"An Upper Bound for the w-Weak Global Dimension of Pullbacks","authors":"Jin Xie, Gaohua Tang","doi":"10.1142/s1005386721000535","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].
分享
查看原文
回调的w-弱整体维数的上界
设[公式:见文]是具有恒等的交换环,[公式:见文]是[公式:见文]的理想环。引入并研究了因子环的[公式:见文]-弱整体维数[公式:见文]。设[公式:见文]是[公式:见文]的[公式:见文]的[公式:见文]的链接延伸,我们还引入[公式:见文]的[公式:见文]的[公式:见文]-弱全局维度[公式:见文]。我们证明了[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是一个字段,而[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是[Formula: see text]。作为一个应用,我们给出了[公式:见文]-笛卡尔方形的弱全局维数[公式:见文]的上界。更准确地说,如果[公式:见文本]是[公式:见文本]-链接在[公式:见文本]之上,那么[公式:见文本]。更进一步,对于米尔诺平方[公式:见文],我们得到[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信