An Upper Bound for the w-Weak Global Dimension of Pullbacks

IF 0.4 4区 数学 Q4 MATHEMATICS
Jin Xie, Gaohua Tang
{"title":"An Upper Bound for the w-Weak Global Dimension of Pullbacks","authors":"Jin Xie, Gaohua Tang","doi":"10.1142/s1005386721000535","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000535","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let [Formula: see text] be a [Formula: see text]-linked extension of [Formula: see text], and we also introduce the [Formula: see text]-weak global dimension [Formula: see text] of [Formula: see text]. We show that the ring [Formula: see text] with [Formula: see text] is exactly a field and the ring [Formula: see text] with [Formula: see text] is exactly a [Formula: see text]. As an application, we give an upper bound for the [Formula: see text]-weak global dimension of a Cartesian square [Formula: see text]. More precisely, if [Formula: see text] is [Formula: see text]-linked over [Formula: see text], then [Formula: see text]. Furthermore, for a Milnor square [Formula: see text], we obtain [Formula: see text].
回调的w-弱整体维数的上界
设[公式:见文]是具有恒等的交换环,[公式:见文]是[公式:见文]的理想环。引入并研究了因子环的[公式:见文]-弱整体维数[公式:见文]。设[公式:见文]是[公式:见文]的[公式:见文]的[公式:见文]的链接延伸,我们还引入[公式:见文]的[公式:见文]的[公式:见文]-弱全局维度[公式:见文]。我们证明了[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是一个字段,而[Formula: see text]与[Formula: see text]的环[Formula: see text]恰好是[Formula: see text]。作为一个应用,我们给出了[公式:见文]-笛卡尔方形的弱全局维数[公式:见文]的上界。更准确地说,如果[公式:见文本]是[公式:见文本]-链接在[公式:见文本]之上,那么[公式:见文本]。更进一步,对于米尔诺平方[公式:见文],我们得到[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信