Spatio-temporal memory streaming

Stephen Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi
{"title":"Spatio-temporal memory streaming","authors":"Stephen Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi","doi":"10.1145/1555754.1555766","DOIUrl":null,"url":null,"abstract":"Recent research advocates memory streaming techniques to alleviate the performance bottleneck caused by the high latencies of off-chip memory accesses. Temporal memory streaming replays previously observed miss sequences to eliminate long chains of dependent misses. Spatial memory streaming predicts repetitive data layout patterns within fixed-size memory regions. Because each technique targets a different subset of misses, their effectiveness varies across workloads and each leaves a significant fraction of misses unpredicted.\n In this paper, we propose Spatio-Temporal Memory Streaming (STeMS) to exploit the synergy between spatial and temporal streaming. We observe that the order of spatial accesses repeats both within and across regions. STeMS records and replays the temporal sequence of region accesses and uses spatial relationships within each region to dynamically reconstruct a predicted total miss order. Using trace-driven and cycle-accurate simulation across a suite of commercial workloads, we demonstrate that with similar implementation complexity as temporal streaming, STeMS achieves equal or higher coverage than spatial or temporal memory streaming alone, and improves performance by 31%, 3%, and 18% over stride, spatial, and temporal prediction, respectively.","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"50 1","pages":"69-80"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"139","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1555754.1555766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 139

Abstract

Recent research advocates memory streaming techniques to alleviate the performance bottleneck caused by the high latencies of off-chip memory accesses. Temporal memory streaming replays previously observed miss sequences to eliminate long chains of dependent misses. Spatial memory streaming predicts repetitive data layout patterns within fixed-size memory regions. Because each technique targets a different subset of misses, their effectiveness varies across workloads and each leaves a significant fraction of misses unpredicted. In this paper, we propose Spatio-Temporal Memory Streaming (STeMS) to exploit the synergy between spatial and temporal streaming. We observe that the order of spatial accesses repeats both within and across regions. STeMS records and replays the temporal sequence of region accesses and uses spatial relationships within each region to dynamically reconstruct a predicted total miss order. Using trace-driven and cycle-accurate simulation across a suite of commercial workloads, we demonstrate that with similar implementation complexity as temporal streaming, STeMS achieves equal or higher coverage than spatial or temporal memory streaming alone, and improves performance by 31%, 3%, and 18% over stride, spatial, and temporal prediction, respectively.
时空记忆流
最近的研究提倡内存流技术来缓解芯片外存储器访问的高延迟所造成的性能瓶颈。时间记忆流回放先前观察到的缺失序列,以消除长链的依赖缺失。空间内存流预测固定大小内存区域内的重复数据布局模式。由于每种技术针对的是不同的失误子集,因此它们的有效性因工作负载而异,并且每种技术都会留下很大一部分无法预测的失误。在本文中,我们提出了时空记忆流(stem)来利用空间和时间流之间的协同作用。我们观察到空间访问的顺序在区域内和跨区域重复。stem记录和重放区域访问的时间序列,并使用每个区域内的空间关系来动态重建预测的总缺失顺序。在一组商业工作负载中使用跟踪驱动和周期精确的模拟,我们证明了在与时间流相似的实现复杂性下,stem实现了与单独的空间或时间内存流相同或更高的覆盖范围,并且在跨距、空间和时间预测方面分别提高了31%、3%和18%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信