The Impact of Database Layer on Auto-Scaling Decisions in a 3-Tier Web Services Cloud Resource Provisioning

A. Nikravesh, S. Ajila, Chung-Horng Lung
{"title":"The Impact of Database Layer on Auto-Scaling Decisions in a 3-Tier Web Services Cloud Resource Provisioning","authors":"A. Nikravesh, S. Ajila, Chung-Horng Lung","doi":"10.1109/COMPSAC.2017.235","DOIUrl":null,"url":null,"abstract":"This paper investigates the impact of the database layer on the scaling actions of the business layer of a 3-tier web service system in cloud resource provisioning. The research question is \"What is the impact of the database layer on the business layer auto-scaling decisions?\" In this work two hypotheses are tested: 1) \"Database tier capacity has no effect on the business tier scaling decisions\" and 2) \"Scaling up of a database tier increases Service Level Agreement (SLA) violations.\" To test the hypotheses, an auto-scaling simulation package based on Queuing Network Models (QNM) and Layered Queuing Network Models (LQNM) is developed. The auto-scaling simulation package is used to investigate the database impact on the business tier scaling decisions in the cloud environments with three different workload patterns (growing, periodic, and unpredictable patterns). This paper also provides an analytical investigation that empirically validate the hypotheses. The results suggest that the database tier has no effect on the business tier scaling decisions. However, decreasing the capacity of the database layer increases the rate of the SLA violations.","PeriodicalId":6556,"journal":{"name":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","volume":"45 1","pages":"401-406"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2017.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates the impact of the database layer on the scaling actions of the business layer of a 3-tier web service system in cloud resource provisioning. The research question is "What is the impact of the database layer on the business layer auto-scaling decisions?" In this work two hypotheses are tested: 1) "Database tier capacity has no effect on the business tier scaling decisions" and 2) "Scaling up of a database tier increases Service Level Agreement (SLA) violations." To test the hypotheses, an auto-scaling simulation package based on Queuing Network Models (QNM) and Layered Queuing Network Models (LQNM) is developed. The auto-scaling simulation package is used to investigate the database impact on the business tier scaling decisions in the cloud environments with three different workload patterns (growing, periodic, and unpredictable patterns). This paper also provides an analytical investigation that empirically validate the hypotheses. The results suggest that the database tier has no effect on the business tier scaling decisions. However, decreasing the capacity of the database layer increases the rate of the SLA violations.
数据库层对三层Web服务云资源配置中自动扩展决策的影响
本文研究了在云资源配置中,数据库层对三层web服务系统的业务层扩展行为的影响。研究的问题是“数据库层对业务层自动扩展决策的影响是什么?”在这项工作中,测试了两个假设:1)“数据库层容量对业务层扩展决策没有影响”和2)数据库层的扩展增加了违反服务水平协议(SLA)的情况。为了验证这些假设,开发了基于排队网络模型(QNM)和分层排队网络模型(LQNM)的自动缩放仿真包。自动扩展模拟包用于研究数据库对云环境中具有三种不同工作负载模式(增长模式、周期性模式和不可预测模式)的业务层扩展决策的影响。本文还提供了一项分析调查,以经验验证这些假设。结果表明,数据库层对业务层的扩展决策没有影响。但是,减少数据库层的容量会增加违反SLA的比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信