Numerical reckoning fixed points via new faster iteration process

IF 0.6 Q3 MATHEMATICS
K. Ullah, Junaid Ahmad, F. M. Khan
{"title":"Numerical reckoning fixed points via new faster iteration process","authors":"K. Ullah, Junaid Ahmad, F. M. Khan","doi":"10.4995/agt.2022.11902","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, no. 1 (2018), 187-196] iterations for numerical reckoning fixed points. Using new iteration process, some fixed point convergence results for generalized α-nonexpansive mappings in the setting of uniformly convex Banach spaces are proved. At the end of paper, we offer a numerical example to compare the rate of convergence of the proposed iteration process with the leading iteration processes.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2022.11902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, no. 1 (2018), 187-196] iterations for numerical reckoning fixed points. Using new iteration process, some fixed point convergence results for generalized α-nonexpansive mappings in the setting of uniformly convex Banach spaces are proved. At the end of paper, we offer a numerical example to compare the rate of convergence of the proposed iteration process with the leading iteration processes.
数值推算定点采用新的更快的迭代过程
在本文中,我们提出了一种新的迭代过程,它比领先的S [J]。非线性凸肛门。8,no。[j] .应用数学,2007,61-79。Comp. 275(2016), 147-155]和M [Filomat 32, no. 5]。数值推算不动点的迭代[j] . 1(2018), 187-196。利用新的迭代过程,证明了一致凸Banach空间上广义α-非扩张映射的不动点收敛性。最后给出了一个数值算例,比较了所提迭代过程与超前迭代过程的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信