GMM Quantile Regression

Sergio Firpo, A. Galvao, Cristine Campos de Xavier Pinto, Alexandre Poirier, Graciela Sanromán
{"title":"GMM Quantile Regression","authors":"Sergio Firpo, A. Galvao, Cristine Campos de Xavier Pinto, Alexandre Poirier, Graciela Sanromán","doi":"10.2139/ssrn.3435264","DOIUrl":null,"url":null,"abstract":"This paper develops generalized method of moments (GMM) estimation and inference procedures for quantile regression models when allowing for general parametric restrictions on the parameters of interest over a set of quantiles. First, we suggest a GMM estimator for simultaneous estimation across multiple quantiles. This estimator exploits a partition of the quantile space, which induces a weighting matrix that is independent of the parameters of interest and the number of partitions. The GMM estimator is designed to estimate a fixed number of quantiles simultaneously, is flexible since it allows for imposing restrictions on the parameters of interest over a set of moments indexed by the quantiles, and accounts for information across quantiles to improve efficiency. Second, we study the properties of the GMM estimator when the number of partitions diverge to infinity, and derive its efficiency bound. Third, we suggest an alternative smooth GMM estimation procedure to be used with many moments. We establish the asymptotic properties of both GMM estimators. These methods have the advantage of being simple to implement in practice. Monte Carlo simulations show numerical evidence of the finite sample properties of the methods. Finally, we apply the proposed methods to estimate the effects of various covariates on birthweight of live infants at the extreme bottom of the conditional distribution.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"240 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3435264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper develops generalized method of moments (GMM) estimation and inference procedures for quantile regression models when allowing for general parametric restrictions on the parameters of interest over a set of quantiles. First, we suggest a GMM estimator for simultaneous estimation across multiple quantiles. This estimator exploits a partition of the quantile space, which induces a weighting matrix that is independent of the parameters of interest and the number of partitions. The GMM estimator is designed to estimate a fixed number of quantiles simultaneously, is flexible since it allows for imposing restrictions on the parameters of interest over a set of moments indexed by the quantiles, and accounts for information across quantiles to improve efficiency. Second, we study the properties of the GMM estimator when the number of partitions diverge to infinity, and derive its efficiency bound. Third, we suggest an alternative smooth GMM estimation procedure to be used with many moments. We establish the asymptotic properties of both GMM estimators. These methods have the advantage of being simple to implement in practice. Monte Carlo simulations show numerical evidence of the finite sample properties of the methods. Finally, we apply the proposed methods to estimate the effects of various covariates on birthweight of live infants at the extreme bottom of the conditional distribution.
GMM分位数回归
本文在考虑对一组分位数上感兴趣的参数的一般参数限制时,发展了分位数回归模型的广义矩估计方法和推理程序。首先,我们提出了一个GMM估计器,用于跨多个分位数的同时估计。这个估计器利用分位数空间的一个分区,它产生一个独立于感兴趣的参数和分区数量的加权矩阵。GMM估计器被设计为同时估计固定数量的分位数,它是灵活的,因为它允许在一组由分位数索引的矩上对感兴趣的参数施加限制,并考虑跨分位数的信息以提高效率。其次,我们研究了分区数发散到无穷大时GMM估计量的性质,并推导了它的效率界。第三,我们提出了一种用于多矩的光滑GMM估计过程。我们建立了两个GMM估计量的渐近性质。这些方法具有在实践中易于实现的优点。蒙特卡罗模拟显示了该方法的有限样本特性的数值证据。最后,我们应用所提出的方法来估计各种协变量对条件分布极端底部活婴出生体重的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信