Exact controllability for a degenerate and singular wave equation with moving boundary

IF 1.1 Q2 MATHEMATICS, APPLIED
Alhabib Moumni, J. Salhi
{"title":"Exact controllability for a degenerate and singular wave equation with moving boundary","authors":"Alhabib Moumni, J. Salhi","doi":"10.3934/naco.2022001","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. By the multiplier method and using an adapted Hardy-poincaré inequality, we prove direct and inverse inequalities for the solutions of the associated adjoint equation. As a consequence, by the Hilbert Uniqueness Method, we deduce the controllability result of the considered system when the control acts on the moving boundary. Furthermore, improved estimates of the speed of the moving endpoint and the controllability time are obtained.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"28 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. By the multiplier method and using an adapted Hardy-poincaré inequality, we prove direct and inverse inequalities for the solutions of the associated adjoint equation. As a consequence, by the Hilbert Uniqueness Method, we deduce the controllability result of the considered system when the control acts on the moving boundary. Furthermore, improved estimates of the speed of the moving endpoint and the controllability time are obtained.
一类带运动边界的简并奇异波动方程的精确可控性
研究了带运动端点的有界区间内简并奇异波动方程的精确边界可控性。利用乘数法,利用hardy - poincarcarve不等式,证明了伴随方程解的正不等式和逆不等式。因此,利用Hilbert唯一性方法,我们推导出了当控制作用于运动边界时所考虑系统的可控性结果。在此基础上,改进了对运动端点速度和可控性时间的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信