Synthesis of highly crystalline phase pure calcium metastannate by molten salt method

I.A. Disher Al-Hydary, S.J. Edress Al-Mohana, M.M. Hussein Al-Marzooqee
{"title":"Synthesis of highly crystalline phase pure calcium metastannate by molten salt method","authors":"I.A. Disher Al-Hydary,&nbsp;S.J. Edress Al-Mohana,&nbsp;M.M. Hussein Al-Marzooqee","doi":"10.1016/j.stmat.2018.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium metastannate CaSnO<sub>3</sub> with orthorhombic crystal system has been synthesized at low temperature by molten salt method using KCl-LiCl as a reaction medium and equimolar of SnO<sub>2</sub> and CaCO<sub>3</sub> as precursors. The process parameters including the reaction temperature, salt type, and salt to precursor weight ratio were investigated. Rietveld refinements on X-ray powder diffraction patterns were performed using X'Pert HighScore Plus software to calculate phase percent of each phase present in the obtained powder. The results of these calculations were followed in order to choose the salt system that requires the least reaction temperature to produce the highest CaSnO<sub>3</sub><span><span> percent. The as-prepared compound was characterized by various techniques such as X-Ray diffraction (XRD), energy dispersive X-Ray spectrometry (EDX), Fourier transform infrared spectrometry (FTIR), and </span>field emission scanning electron microscope<span> (FE-SEM). The experimental results showed that highly crystalline phase pure CaSnO</span></span><sub>3</sub> laminar plates could be prepared at 1000 °C for short period of time without any other detectable secondary phases.</p></div>","PeriodicalId":101145,"journal":{"name":"Science and Technology of Materials","volume":"30 2","pages":"Pages 103-108"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stmat.2018.04.002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2603636318300290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Calcium metastannate CaSnO3 with orthorhombic crystal system has been synthesized at low temperature by molten salt method using KCl-LiCl as a reaction medium and equimolar of SnO2 and CaCO3 as precursors. The process parameters including the reaction temperature, salt type, and salt to precursor weight ratio were investigated. Rietveld refinements on X-ray powder diffraction patterns were performed using X'Pert HighScore Plus software to calculate phase percent of each phase present in the obtained powder. The results of these calculations were followed in order to choose the salt system that requires the least reaction temperature to produce the highest CaSnO3 percent. The as-prepared compound was characterized by various techniques such as X-Ray diffraction (XRD), energy dispersive X-Ray spectrometry (EDX), Fourier transform infrared spectrometry (FTIR), and field emission scanning electron microscope (FE-SEM). The experimental results showed that highly crystalline phase pure CaSnO3 laminar plates could be prepared at 1000 °C for short period of time without any other detectable secondary phases.

熔盐法合成高结晶相纯亚metastate钙
以KCl-LiCl为反应介质,等量的SnO2和CaCO3为前驱体,采用熔盐法在低温下合成了具有正交晶系的钙转移酸CaSnO3。考察了反应温度、盐的种类、盐与前驱物的质量比等工艺参数。使用X'Pert HighScore Plus软件对X射线粉末衍射图进行Rietveld细化,以计算所获得的粉末中存在的每个相的相百分比。根据这些计算结果,选择反应温度最低的盐体系,以产生最高的casno3%。利用x射线衍射(XRD)、能量色散x射线光谱(EDX)、傅里叶变换红外光谱(FTIR)和场发射扫描电镜(FE-SEM)等技术对所制备的化合物进行了表征。实验结果表明,在1000℃下,短时间内可以制备出高结晶相的纯CaSnO3层流板,且无其他可检测到的二次相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信