C. Avinash, DiPietro Loretta, Young Heather, Elmi Angelo
{"title":"Modeling time loss from sports-related injuries using random effects models: an illustration using soccer-related injury observations","authors":"C. Avinash, DiPietro Loretta, Young Heather, Elmi Angelo","doi":"10.1515/JQAS-2019-0030","DOIUrl":null,"url":null,"abstract":"In assessments of sports-related injury severity, time loss (TL) is measured as a count of days lost to injury and analyzed using ordinal cut points. This approach ignores various athlete and event-specific factors that determine the severity of an injury. We present a conceptual framework for modeling this outcome using univariate random effects count or survival regression. Using a sample of US collegiate soccer-related injury observations, we fit random effects Poisson and Weibull Regression models to perform “severity-adjusted” evaluations of TL, and use our models to make inferences regarding the recovery process. Injury site, injury mechanism and injury history emerged as the strongest predictors in our sample. In comparing random and fixed effects models, we noted that the incorporation of the random effect attenuated associations between most observed covariates and TL, and model fit statistics revealed that the random effects models (AICPoisson = 51875.20; AICWeibull-AFT = 51113.00) improved model fit over the fixed effects models (AICPoisson = 160695.20; AICWeibull-AFT = 53179.00). Our analyses serve as a useful starting point for modeling how TL may actually occur when a player is injured, and suggest that random effects or frailty based approaches can help isolate the effect of potential determinants of TL.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2019-0030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In assessments of sports-related injury severity, time loss (TL) is measured as a count of days lost to injury and analyzed using ordinal cut points. This approach ignores various athlete and event-specific factors that determine the severity of an injury. We present a conceptual framework for modeling this outcome using univariate random effects count or survival regression. Using a sample of US collegiate soccer-related injury observations, we fit random effects Poisson and Weibull Regression models to perform “severity-adjusted” evaluations of TL, and use our models to make inferences regarding the recovery process. Injury site, injury mechanism and injury history emerged as the strongest predictors in our sample. In comparing random and fixed effects models, we noted that the incorporation of the random effect attenuated associations between most observed covariates and TL, and model fit statistics revealed that the random effects models (AICPoisson = 51875.20; AICWeibull-AFT = 51113.00) improved model fit over the fixed effects models (AICPoisson = 160695.20; AICWeibull-AFT = 53179.00). Our analyses serve as a useful starting point for modeling how TL may actually occur when a player is injured, and suggest that random effects or frailty based approaches can help isolate the effect of potential determinants of TL.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.