C. Avinash, DiPietro Loretta, Young Heather, Elmi Angelo
{"title":"Modeling time loss from sports-related injuries using random effects models: an illustration using soccer-related injury observations","authors":"C. Avinash, DiPietro Loretta, Young Heather, Elmi Angelo","doi":"10.1515/JQAS-2019-0030","DOIUrl":null,"url":null,"abstract":"In assessments of sports-related injury severity, time loss (TL) is measured as a count of days lost to injury and analyzed using ordinal cut points. This approach ignores various athlete and event-specific factors that determine the severity of an injury. We present a conceptual framework for modeling this outcome using univariate random effects count or survival regression. Using a sample of US collegiate soccer-related injury observations, we fit random effects Poisson and Weibull Regression models to perform “severity-adjusted” evaluations of TL, and use our models to make inferences regarding the recovery process. Injury site, injury mechanism and injury history emerged as the strongest predictors in our sample. In comparing random and fixed effects models, we noted that the incorporation of the random effect attenuated associations between most observed covariates and TL, and model fit statistics revealed that the random effects models (AICPoisson = 51875.20; AICWeibull-AFT = 51113.00) improved model fit over the fixed effects models (AICPoisson = 160695.20; AICWeibull-AFT = 53179.00). Our analyses serve as a useful starting point for modeling how TL may actually occur when a player is injured, and suggest that random effects or frailty based approaches can help isolate the effect of potential determinants of TL.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"15 1","pages":"221-235"},"PeriodicalIF":1.1000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2019-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
In assessments of sports-related injury severity, time loss (TL) is measured as a count of days lost to injury and analyzed using ordinal cut points. This approach ignores various athlete and event-specific factors that determine the severity of an injury. We present a conceptual framework for modeling this outcome using univariate random effects count or survival regression. Using a sample of US collegiate soccer-related injury observations, we fit random effects Poisson and Weibull Regression models to perform “severity-adjusted” evaluations of TL, and use our models to make inferences regarding the recovery process. Injury site, injury mechanism and injury history emerged as the strongest predictors in our sample. In comparing random and fixed effects models, we noted that the incorporation of the random effect attenuated associations between most observed covariates and TL, and model fit statistics revealed that the random effects models (AICPoisson = 51875.20; AICWeibull-AFT = 51113.00) improved model fit over the fixed effects models (AICPoisson = 160695.20; AICWeibull-AFT = 53179.00). Our analyses serve as a useful starting point for modeling how TL may actually occur when a player is injured, and suggest that random effects or frailty based approaches can help isolate the effect of potential determinants of TL.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.