{"title":"Joint Inversion of Magnetotelluric Impedance and Tipper Data in 3D Axial Anisotropic Media","authors":"Wei Luo, Kunpeng Wang, Hui Cao, Changsheng Duan, Tao Wang, Xingxiang Jian","doi":"10.2113/JEEG19-022","DOIUrl":null,"url":null,"abstract":"Magnetotelluric (MT) impedance and tipper data can be utilized to reflect underground structural information. However, when the axial anisotropic property of an abnormal body is marked, it will seriously influence MT measuring data. This study divides the MT field into primary and secondary components and replaces the conductivity parameter in a three-dimensional (3D) governing equation with axial anisotropic conductivity. Analysis of the influence of axial anisotropy on MT tipper data is presented, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize a 3D MT axial anisotropic inversion with impedance and tipper data. The tests presented in this paper show that the resolution of the inverting axial anisotropic model with impedance and tipper data is better than that of only using impedance data.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"354 1","pages":"25-36"},"PeriodicalIF":1.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Magnetotelluric (MT) impedance and tipper data can be utilized to reflect underground structural information. However, when the axial anisotropic property of an abnormal body is marked, it will seriously influence MT measuring data. This study divides the MT field into primary and secondary components and replaces the conductivity parameter in a three-dimensional (3D) governing equation with axial anisotropic conductivity. Analysis of the influence of axial anisotropy on MT tipper data is presented, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize a 3D MT axial anisotropic inversion with impedance and tipper data. The tests presented in this paper show that the resolution of the inverting axial anisotropic model with impedance and tipper data is better than that of only using impedance data.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.