Assessment of Coringa Mangrove shoreline migration using geospatial techniques

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
G. Sharma, K. Patnaik
{"title":"Assessment of Coringa Mangrove shoreline migration using geospatial techniques","authors":"G. Sharma, K. Patnaik","doi":"10.1080/1755876X.2020.1840245","DOIUrl":null,"url":null,"abstract":"ABSTRACT Coringa Mangroves in the Kakinada Bay have evolved as the second-largest mangroves in the East Coast of India over the last century. The Coringa Mangrove shoreline has accreted considerably in the past decades as observed from the satellite imageries, adding value to the natural biodiversity of flora and fauna. This study is focused on quantifying the long term changes of Coringa mangrove shoreline using the Landsat imageries for years 1977, 1988, 2000, and 2013 using the Digital Shoreline Analysis System. For a mangrove shoreline length of 20.5 km, 41 transects were cast at an interval of 500 m for calculating the change and their migration distance using three statistical methods, namely End Point Rate (EPR), Net Shoreline Movement (NSM) and Linear Regression Rate (LRR). Results showed that there was considerable growth of mangroves in the bay leading to the seaward migration of the mangrove shoreline from the year 1977–2013. The study observed the difference in the mangrove shoreline migration dynamics in the South-eastern (near the bottom of the spit) and the western part of the Kakinada Bay. The calculated average degradation rate due to erosion is −5.19 m.yr−1 and the average accretion rate leading to their growth is 14.83 m.yr−1 for all transects of the 20.5 km mangrove shoreline stretch during this period. The results hold importance as they help in identifying the regions prone to mangrove degradation and enable management planning for the protection of the eroding stretch of the mangrove shoreline.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2020.1840245","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Coringa Mangroves in the Kakinada Bay have evolved as the second-largest mangroves in the East Coast of India over the last century. The Coringa Mangrove shoreline has accreted considerably in the past decades as observed from the satellite imageries, adding value to the natural biodiversity of flora and fauna. This study is focused on quantifying the long term changes of Coringa mangrove shoreline using the Landsat imageries for years 1977, 1988, 2000, and 2013 using the Digital Shoreline Analysis System. For a mangrove shoreline length of 20.5 km, 41 transects were cast at an interval of 500 m for calculating the change and their migration distance using three statistical methods, namely End Point Rate (EPR), Net Shoreline Movement (NSM) and Linear Regression Rate (LRR). Results showed that there was considerable growth of mangroves in the bay leading to the seaward migration of the mangrove shoreline from the year 1977–2013. The study observed the difference in the mangrove shoreline migration dynamics in the South-eastern (near the bottom of the spit) and the western part of the Kakinada Bay. The calculated average degradation rate due to erosion is −5.19 m.yr−1 and the average accretion rate leading to their growth is 14.83 m.yr−1 for all transects of the 20.5 km mangrove shoreline stretch during this period. The results hold importance as they help in identifying the regions prone to mangrove degradation and enable management planning for the protection of the eroding stretch of the mangrove shoreline.
利用地理空间技术评价科林加红树林岸线迁移
在过去的一个世纪里,卡基纳达湾的科林加红树林已经发展成为印度东海岸的第二大红树林。从卫星图像中观察到,在过去的几十年里,科林加红树林海岸线已经大大增加,增加了动植物的自然生物多样性。本研究采用数字海岸线分析系统,利用1977年、1988年、2000年和2013年的陆地卫星图像,量化了科林加红树林海岸线的长期变化。以20.5 km的红树林岸线为研究对象,采用终点率(End Point Rate, EPR)、净岸线移动率(Net shoreline Movement, NSM)和线性回归率(Linear Regression Rate, LRR) 3种统计方法,每隔500 m投下41个样带,计算岸线变化及其迁移距离。结果表明:1977-2013年,黄河湾红树林生长明显,导致红树林海岸线向海迁移;该研究观察了Kakinada湾东南部(靠近吐槽底部)和西部红树林海岸线迁移动态的差异。计算得到的平均侵蚀降解率为−5.19 m。Yr−1,导致其生长的平均吸积速率为14.83 m。在此期间,20.5公里红树林海岸线延伸的所有样带的Yr−1。这些结果具有重要意义,因为它们有助于确定容易发生红树林退化的区域,并有助于管理规划,以保护红树林海岸线的侵蚀延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信