Catastrophic failure mechanism of rock masses system and earthquake prediction based on percolation theory

Zhaoxing Lv , Yangsheng Zhao , Zijun Feng
{"title":"Catastrophic failure mechanism of rock masses system and earthquake prediction based on percolation theory","authors":"Zhaoxing Lv ,&nbsp;Yangsheng Zhao ,&nbsp;Zijun Feng","doi":"10.1016/j.rockmb.2022.100009","DOIUrl":null,"url":null,"abstract":"<div><p>The failure of rocks is a complicated process as the mechanical properties of the rock are governed by loading history and cumulative ruptures. The geometric aspects of fractures, such as the size and shape of the fractures, the spatial distribution of the fracture networks, and the relations among these aspects also depend on the loads acting on rock mass. In general, the fractures are randomly generated in space which is difficult to be described using mathematical methods. In this paper, the failure processes of rock have been analyzed using the percolation theory. The results indicate that the failure process of rock is a transition from a stable state to an unstable state. This phenomenon is essentially consistent with the phase transition in the percolation theory. Based on this consistency, a theoretical model of percolation for earthquake prediction is proposed. A large number of seismic data provided strong evidence in support of the reliability and applicability of this model.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"1 1","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773230422000099/pdfft?md5=09cb18f3a166ea2215c8605b6dc47932&pid=1-s2.0-S2773230422000099-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230422000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The failure of rocks is a complicated process as the mechanical properties of the rock are governed by loading history and cumulative ruptures. The geometric aspects of fractures, such as the size and shape of the fractures, the spatial distribution of the fracture networks, and the relations among these aspects also depend on the loads acting on rock mass. In general, the fractures are randomly generated in space which is difficult to be described using mathematical methods. In this paper, the failure processes of rock have been analyzed using the percolation theory. The results indicate that the failure process of rock is a transition from a stable state to an unstable state. This phenomenon is essentially consistent with the phase transition in the percolation theory. Based on this consistency, a theoretical model of percolation for earthquake prediction is proposed. A large number of seismic data provided strong evidence in support of the reliability and applicability of this model.

岩体系统的突变破坏机理及基于渗流理论的地震预测
岩石的破坏是一个复杂的过程,岩石的力学特性受加载历史和累积破裂的影响。裂缝的几何方面,如裂缝的大小和形状、裂缝网络的空间分布以及这些方面之间的关系也取决于作用在岩体上的荷载。一般来说,裂缝在空间上是随机产生的,很难用数学方法来描述。本文运用渗流理论对岩石的破坏过程进行了分析。结果表明,岩石的破坏过程是由稳定状态向不稳定状态过渡的过程。这一现象与渗流理论中的相变基本一致。基于这种一致性,提出了一种用于地震预报的渗流理论模型。大量的地震资料有力地证明了该模型的可靠性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信