Flexible hybrid stores: Constraint-based rewriting to the rescue

Francesca Bugiotti, Damian Bursztyn, Alin Deutsch, I. Manolescu, Stamatis Zampetakis
{"title":"Flexible hybrid stores: Constraint-based rewriting to the rescue","authors":"Francesca Bugiotti, Damian Bursztyn, Alin Deutsch, I. Manolescu, Stamatis Zampetakis","doi":"10.1109/ICDE.2016.7498353","DOIUrl":null,"url":null,"abstract":"Data management goes through interesting times1, as the number of currently available data management systems (DMSs in short) is probably higher than ever before. This leads to unique opportunities for data-intensive applications, as some systems provide excellent performance on certain data processing operations. Yet, it also raises great challenges, as a system efficient on some tasks may perform poorly or not support other tasks, making it impossible to use a single DMS for a given application. It is thus desirable to use different DMSs side by side in order to take advantage of their best performance, as advocated under terms such as hybrid or poly-stores. We present ESTOCADA, a novel system capable of exploiting side-by-side a practically unbound variety of DMSs, all the while guaranteeing the soundness and completeness of the store, and striving to extract the best performance out of the various DMSs. Our system leverages recent advances in the area of query rewriting under constraints, which we use to capture the various data models and describe the fragments each DMS stores.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"47 1","pages":"1394-1397"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Data management goes through interesting times1, as the number of currently available data management systems (DMSs in short) is probably higher than ever before. This leads to unique opportunities for data-intensive applications, as some systems provide excellent performance on certain data processing operations. Yet, it also raises great challenges, as a system efficient on some tasks may perform poorly or not support other tasks, making it impossible to use a single DMS for a given application. It is thus desirable to use different DMSs side by side in order to take advantage of their best performance, as advocated under terms such as hybrid or poly-stores. We present ESTOCADA, a novel system capable of exploiting side-by-side a practically unbound variety of DMSs, all the while guaranteeing the soundness and completeness of the store, and striving to extract the best performance out of the various DMSs. Our system leverages recent advances in the area of query rewriting under constraints, which we use to capture the various data models and describe the fragments each DMS stores.
灵活的混合存储:基于约束的重写来拯救
数据管理经历了一个有趣的时期1,因为当前可用的数据管理系统(简称dms)的数量可能比以往任何时候都要多。这为数据密集型应用程序提供了独特的机会,因为有些系统在某些数据处理操作上提供了出色的性能。然而,它也带来了巨大的挑战,因为在某些任务上高效的系统可能表现不佳或不支持其他任务,这使得不可能为给定的应用程序使用单个DMS。因此,为了利用它们的最佳性能,需要并排使用不同的dms,正如混合存储或多存储等术语所提倡的那样。我们提出了ESTOCADA,一个能够并排开发几乎不结合的多种dms的新系统,同时保证存储的健全性和完整性,并努力从各种dms中提取最佳性能。我们的系统利用了约束下查询重写领域的最新进展,我们使用它来捕获各种数据模型并描述每个DMS存储的片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信