Structural Query Expansion via motifs from Wikipedia

Joan Guisado-Gámez, Arnau Prat-Pérez, J. Larriba-Pey
{"title":"Structural Query Expansion via motifs from Wikipedia","authors":"Joan Guisado-Gámez, Arnau Prat-Pérez, J. Larriba-Pey","doi":"10.1145/3077331.3077342","DOIUrl":null,"url":null,"abstract":"The search for relevant information can be very frustrating for users who, unintentionally, use inappropriate keywords to express their needs. Expansion techniques aim at transforming the users' queries by adding new terms, called expansion features, that better describe the real users' intent. We propose Structural Query Expansion (SQE), a method that relies on relevant structures found in knowledge bases (KBs) to extract the expansion features as opposed to the use of semantics. In the particular case of this paper, we use Wikipedia because it is probably the largest source of up-to-date information. SQE is capable of achieving more than 150% improvement over non-expanded queries and is able to identify the expansion features in less than 0.2 seconds in the worst-case scenario. SQE is designed as an orthogonal method that can be combined with other expansion techniques, such as pseudo-relevance feedback.","PeriodicalId":92430,"journal":{"name":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077331.3077342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The search for relevant information can be very frustrating for users who, unintentionally, use inappropriate keywords to express their needs. Expansion techniques aim at transforming the users' queries by adding new terms, called expansion features, that better describe the real users' intent. We propose Structural Query Expansion (SQE), a method that relies on relevant structures found in knowledge bases (KBs) to extract the expansion features as opposed to the use of semantics. In the particular case of this paper, we use Wikipedia because it is probably the largest source of up-to-date information. SQE is capable of achieving more than 150% improvement over non-expanded queries and is able to identify the expansion features in less than 0.2 seconds in the worst-case scenario. SQE is designed as an orthogonal method that can be combined with other expansion techniques, such as pseudo-relevance feedback.
通过维基百科的主题进行结构查询扩展
搜索相关信息可能会让用户非常沮丧,因为他们无意中使用了不合适的关键字来表达自己的需求。扩展技术旨在通过添加新的术语(称为扩展特征)来转换用户的查询,这些术语更好地描述了用户的真实意图。我们提出了结构化查询扩展(SQE),这是一种依赖于知识库(KBs)中发现的相关结构来提取扩展特征的方法,而不是使用语义。在本文的特殊情况下,我们使用维基百科,因为它可能是最新信息的最大来源。SQE能够实现比非扩展查询150%以上的改进,并且能够在最坏的情况下在0.2秒内识别扩展特性。SQE被设计为一种正交方法,可以与伪相关反馈等其他扩展技术相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信