Comparative study of metaheuristic algorithms using Knapsack Problem

Dikscha Sapra, Rashi Sharma, A. Agarwal
{"title":"Comparative study of metaheuristic algorithms using Knapsack Problem","authors":"Dikscha Sapra, Rashi Sharma, A. Agarwal","doi":"10.1109/CONFLUENCE.2017.7943137","DOIUrl":null,"url":null,"abstract":"This paper aims to discuss and compare various metaheuristic algorithms applied to the “Knapsack Problem”. The Knapsack Problem is a combinatorial optimization maximization problem which requires to find the number of each weighted item to be included in a hypothetical knapsack, so the total weight is less than or equal to the required weight. To come to an optimized solution for such a problem, a variety of algorithms can possibly be used. In this paper, Tabu Search, Scatter Search and Local Search algorithms are compared taking execution time, solution quality and relative difference to best known quality, as metrics to compute the results of this NP-hard problem.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"46 1","pages":"134-137"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper aims to discuss and compare various metaheuristic algorithms applied to the “Knapsack Problem”. The Knapsack Problem is a combinatorial optimization maximization problem which requires to find the number of each weighted item to be included in a hypothetical knapsack, so the total weight is less than or equal to the required weight. To come to an optimized solution for such a problem, a variety of algorithms can possibly be used. In this paper, Tabu Search, Scatter Search and Local Search algorithms are compared taking execution time, solution quality and relative difference to best known quality, as metrics to compute the results of this NP-hard problem.
基于背包问题的元启发式算法比较研究
本文旨在讨论和比较应用于“背包问题”的各种元启发式算法。背包问题是一个组合优化最大化问题,它要求找到一个假设的背包中包含的每个加权物品的数量,使总重量小于或等于所需重量。为了得到这类问题的最佳解决方案,可以使用多种算法。本文比较了禁忌搜索、分散搜索和局部搜索算法,以执行时间、解质量和与最优已知质量的相对差作为度量来计算这个np困难问题的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信