Manipulation of magnetization and spin transport in hydrogenated graphene with THz pulses

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jakob Kjaerulff Svaneborg, Aleksander Bach Lorentzen, F. Gao, A. Jauho, M. Brandbyge
{"title":"Manipulation of magnetization and spin transport in hydrogenated graphene with THz pulses","authors":"Jakob Kjaerulff Svaneborg, Aleksander Bach Lorentzen, F. Gao, A. Jauho, M. Brandbyge","doi":"10.3389/fphy.2023.1237383","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) field pulses can now be applied in scanning tunneling microscopy (THz-STM) junction experiments to study time-resolved dynamics. The relatively slow pulse compared to the typical electronic time-scale calls for approximations based on a time-scale separation. Here, we contrast three methods based on non-equilibrium Green’s functions: i) the steady-state, adiabatic results, ii) the lowest-order dynamic expansion in the time variation, and iii) the auxiliary mode propagation method without approximations in the time variation. We consider a concrete THz-STM junction setup involving a hydrogen adsorbate on graphene where the localized spin polarization can be manipulated on/off by a local field from the tip electrode and/or a back-gate affecting the in-plane transport. We use steady-state non-equilibrium Green’s function theory combined with density functional theory to obtain a Hubbard model for the study of the junction dynamics. Solving the Hubbard model in a mean-field approximation, we find that the near-adiabatic first-order dynamic expansion in the time variation provides a good description for STM voltage pulses up to the 1 V range.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"349 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2023.1237383","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) field pulses can now be applied in scanning tunneling microscopy (THz-STM) junction experiments to study time-resolved dynamics. The relatively slow pulse compared to the typical electronic time-scale calls for approximations based on a time-scale separation. Here, we contrast three methods based on non-equilibrium Green’s functions: i) the steady-state, adiabatic results, ii) the lowest-order dynamic expansion in the time variation, and iii) the auxiliary mode propagation method without approximations in the time variation. We consider a concrete THz-STM junction setup involving a hydrogen adsorbate on graphene where the localized spin polarization can be manipulated on/off by a local field from the tip electrode and/or a back-gate affecting the in-plane transport. We use steady-state non-equilibrium Green’s function theory combined with density functional theory to obtain a Hubbard model for the study of the junction dynamics. Solving the Hubbard model in a mean-field approximation, we find that the near-adiabatic first-order dynamic expansion in the time variation provides a good description for STM voltage pulses up to the 1 V range.
太赫兹脉冲对氢化石墨烯磁化和自旋输运的操纵
太赫兹(THz)场脉冲现在可以应用于扫描隧道显微镜(THz- stm)结实验来研究时间分辨动力学。与典型的电子时标相比,相对较慢的脉冲需要基于时标分离的近似。本文对比了基于非平衡格林函数的三种方法:i)稳态绝热结果,ii)时变条件下的最低阶动态展开,以及iii)时变条件下无近似的辅助模态传播方法。我们考虑了一个具体的太赫兹- stm结装置,涉及石墨烯上的氢吸附物,其中局部自旋极化可以通过来自尖端电极和/或影响平面内输运的后门的局部场来控制。利用稳态非平衡格林函数理论与密度泛函理论相结合,建立了研究结动力学的Hubbard模型。在平均场近似下求解Hubbard模型,我们发现随时间变化的近绝热一阶动态展开可以很好地描述高达1v范围的STM电压脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信