{"title":"A Skellam regression model for quantifying positional value in soccer","authors":"K. Pelechrinis, Wayne L. Winston","doi":"10.1515/JQAS-2019-0122","DOIUrl":null,"url":null,"abstract":"Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"25 1","pages":"187 - 201"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2019-0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.