{"title":"A Skellam regression model for quantifying positional value in soccer","authors":"K. Pelechrinis, Wayne L. Winston","doi":"10.1515/JQAS-2019-0122","DOIUrl":null,"url":null,"abstract":"Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JQAS-2019-0122","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.