{"title":"Contact Angle Hysteresis Characterization of Textured Super-Hydrophobic Surfaces","authors":"A. Shastry, S. Abbasi, A. Epilepsia, K. Bohringer","doi":"10.1109/SENSOR.2007.4300201","DOIUrl":null,"url":null,"abstract":"This paper presents the fabrication of rough super-hydrophobic surfaces, dynamic high-speed measurements of sliding angles of water droplets, and develops a mechanistic understanding of contact angle hysteresis - the major dissipative mechanism in droplet based microfluidic systems. We investigate texture-dependence of hysteresis, evaluate the current model, propose a modification, and observe that the two models - current and proposed - are useful bounds on hysteresis of the surface except in ultra- hydrophobic regime where observed hysteresis is significantly higher than predictions of either model.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"366 1","pages":"599-602"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the fabrication of rough super-hydrophobic surfaces, dynamic high-speed measurements of sliding angles of water droplets, and develops a mechanistic understanding of contact angle hysteresis - the major dissipative mechanism in droplet based microfluidic systems. We investigate texture-dependence of hysteresis, evaluate the current model, propose a modification, and observe that the two models - current and proposed - are useful bounds on hysteresis of the surface except in ultra- hydrophobic regime where observed hysteresis is significantly higher than predictions of either model.