Framework structure crystalline materials and Rigid Unit Modes (RUMs). Introducing the new concept of MLRUMs and skeletions Authors

M. Smirnov, P. Saint-Grégoire
{"title":"Framework structure crystalline materials and Rigid Unit Modes (RUMs). Introducing the new concept of MLRUMs and skeletions Authors","authors":"M. Smirnov, P. Saint-Grégoire","doi":"10.23647/ca.md20202005","DOIUrl":null,"url":null,"abstract":"This article reviews Framework Structures (FWSs), defined as crystalline materials built of rigid AXn polyhedra sharing vertices (like perovskites, tungsten bronzes, Dion-Jacobson, Ruddlesden-Popper, and Aurivillius phases, quartz, silicates, and others), and their pecularities resulting from this linkage. The situation of rigid units linked by common vertices may allow the units to accomplish concordant rotations without deformation, which gives rise to soft phonon modes called “Rigid Unit Modes” (RUMs). The condensation of a RUM can trigger structural phase transitions to a structure of lower symmetry, with tilted polyhedra, at the origin of spontaneous ferroic or multiferroic properties. We overview results precedently obtained on RUMs in perovskites, tetragonal tungsten bronzes, and quartz, and detail new results on “maximally localized RUMs” (MLRUMs), a fundamental new concept in the physics of RUMs. We introduce also the related new concept of “skeletions” that allows to generate all ferroelastic phases found in these systems, and generalizes the Glazer's tilt-system approach.","PeriodicalId":19388,"journal":{"name":"OAJ Materials and Devices","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OAJ Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23647/ca.md20202005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article reviews Framework Structures (FWSs), defined as crystalline materials built of rigid AXn polyhedra sharing vertices (like perovskites, tungsten bronzes, Dion-Jacobson, Ruddlesden-Popper, and Aurivillius phases, quartz, silicates, and others), and their pecularities resulting from this linkage. The situation of rigid units linked by common vertices may allow the units to accomplish concordant rotations without deformation, which gives rise to soft phonon modes called “Rigid Unit Modes” (RUMs). The condensation of a RUM can trigger structural phase transitions to a structure of lower symmetry, with tilted polyhedra, at the origin of spontaneous ferroic or multiferroic properties. We overview results precedently obtained on RUMs in perovskites, tetragonal tungsten bronzes, and quartz, and detail new results on “maximally localized RUMs” (MLRUMs), a fundamental new concept in the physics of RUMs. We introduce also the related new concept of “skeletions” that allows to generate all ferroelastic phases found in these systems, and generalizes the Glazer's tilt-system approach.
框架结构结晶材料和刚性单元模式(rum)。介绍了mlrum和骨架作者的新概念
本文回顾了框架结构(FWSs),定义为由共用顶点的刚性AXn多面体构成的晶体材料(如钙钛矿、钨青铜、Dion-Jacobson、Ruddlesden-Popper和Aurivillius相、石英、硅酸盐等),以及它们由这种连接产生的特性。由共同顶点连接的刚性单元的情况可能允许单元在不变形的情况下完成协调旋转,从而产生软声子模式,称为“刚性单元模式”(rum)。在自发铁性或多铁性的起源处,RUM的缩合可以触发结构相变到具有倾斜多面体的低对称性结构。本文综述了前人在钙钛矿、四方钨青铜和石英中所获得的朗姆酒的研究结果,并详细介绍了“最大局部朗姆酒”(ml朗姆酒)的新结果,这是朗姆酒物理学中的一个基本新概念。我们还介绍了相关的“骨架”的新概念,它允许生成在这些系统中发现的所有铁弹性相,并推广了Glazer的倾斜系统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信