High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Swati Kumari, João R. C. Junqueira, Wolfgang Schuhmann, Alfred Ludwig*
{"title":"High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties","authors":"Swati Kumari,&nbsp;João R. C. Junqueira,&nbsp;Wolfgang Schuhmann,&nbsp;Alfred Ludwig*","doi":"10.1021/acscombsci.0c00150","DOIUrl":null,"url":null,"abstract":"<p >Combinatorial synthesis and high-throughput characterization of thin-film materials libraries enable to efficiently identify both photoelectrochemically active and inactive, as well as stable and instable systems for solar water splitting. This is shown on six ternary metal vanadate (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) thin-film materials libraries, fabricated using combinatorial reactive magnetron cosputtering with subsequent annealing in air. By means of high-throughput characterization of these libraries correlations between composition, crystal structure, photocurrent density, and stability of the M–V–O systems in different electrolytes such as acidic, neutral and alkaline media were identified. The systems Cu–V–O and Ag–V–O are stable in alkaline electrolyte and exhibited photocurrents of 170 and 554 μA/cm<sup>2</sup>, respectively, whereas the systems W–V–O, Cr–V–O, and Co–V–O are not stable in alkaline electrolyte. However, the Cr–V–O and Co–V–O systems showed an enlarged photoactive region in acidic electrolyte, albeit with very low photocurrents (&lt;10 μA/cm<sup>2</sup>). Complete data sets obtained from these different screening sets, including information on nonpromising systems, lays groundwork for their use to predict new systems for solar water splitting, for example, by machine learning.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00150","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00150","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

Abstract

Combinatorial synthesis and high-throughput characterization of thin-film materials libraries enable to efficiently identify both photoelectrochemically active and inactive, as well as stable and instable systems for solar water splitting. This is shown on six ternary metal vanadate (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) thin-film materials libraries, fabricated using combinatorial reactive magnetron cosputtering with subsequent annealing in air. By means of high-throughput characterization of these libraries correlations between composition, crystal structure, photocurrent density, and stability of the M–V–O systems in different electrolytes such as acidic, neutral and alkaline media were identified. The systems Cu–V–O and Ag–V–O are stable in alkaline electrolyte and exhibited photocurrents of 170 and 554 μA/cm2, respectively, whereas the systems W–V–O, Cr–V–O, and Co–V–O are not stable in alkaline electrolyte. However, the Cr–V–O and Co–V–O systems showed an enlarged photoactive region in acidic electrolyte, albeit with very low photocurrents (<10 μA/cm2). Complete data sets obtained from these different screening sets, including information on nonpromising systems, lays groundwork for their use to predict new systems for solar water splitting, for example, by machine learning.

Abstract Image

高通量探索金属钒酸盐薄膜系统(M - v - o, M = Cu, Ag, W, Cr, Co, Fe)用于太阳能水分解:组成,结构,稳定性和光电化学性质
薄膜材料库的组合合成和高通量表征能够有效地识别光电化学活性和非活性,以及稳定和不稳定的太阳能水分解系统。这表现在六个三元金属钒酸盐(M - v - o, M = Cu, Ag, W, Cr, Co, Fe)薄膜材料库上,这些薄膜材料是用组合反应磁控溅射和随后在空气中退火制备的。通过对这些文库的高通量表征,确定了M-V-O体系在不同电解质(酸性、中性和碱性介质)中的组成、晶体结构、光电流密度和稳定性之间的相关性。Cu-V-O和Ag-V-O体系在碱性电解液中稳定,光电流分别为170和554 μA/cm2,而W-V-O、Cr-V-O和Co-V-O体系在碱性电解液中不稳定。然而,Cr-V-O和Co-V-O体系在酸性电解液中显示出较大的光活性区,尽管光电流很低(<10 μA/cm2)。从这些不同的筛选集中获得的完整数据集,包括关于没有前景的系统的信息,为它们用于预测新的太阳能水分解系统奠定了基础,例如,通过机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信