Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen
{"title":"Coarse-to-Fine Grained Classification","authors":"Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen","doi":"10.1145/3331184.3331336","DOIUrl":null,"url":null,"abstract":"Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.