{"title":"Eigenvector visualization and art","authors":"D. Griffith","doi":"10.1080/17513472.2021.1922239","DOIUrl":null,"url":null,"abstract":"Existing interfaces between mathematics and art, and geography and art, began overlapping in recent years. This newer overarching intersection partly is attributable to the scientific visualization of the concept of an eigenvector from the subdiscipline of matrix algebra. Spectral geometry and signal processing expanded this overlap. Today, novel applications of the statistical Moran eigenvector spatial filtering (MESF) methodology to paintings accentuates and exploits spatial autocorrelation as a fundamental element of art, further expanding this overlap. This paper studies MESF visualizations by compositing identified relevant spatial autocorrelation components, examining a particular Van Gogh painting for the first time, and more intensely re-examining several paintings already evaluated with MESF techniques. Findings include: painting replications solely based upon their spatial autocorrelation components as captured and visualized by certain eigenvectors are visibly indistinguishable from their original counterparts; and, spatial autocorrelation supplies measurements allowing a differentiation of paintings, a potentially valuable discovery for art history. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"16 1","pages":"170 - 187"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2021.1922239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4
Abstract
Existing interfaces between mathematics and art, and geography and art, began overlapping in recent years. This newer overarching intersection partly is attributable to the scientific visualization of the concept of an eigenvector from the subdiscipline of matrix algebra. Spectral geometry and signal processing expanded this overlap. Today, novel applications of the statistical Moran eigenvector spatial filtering (MESF) methodology to paintings accentuates and exploits spatial autocorrelation as a fundamental element of art, further expanding this overlap. This paper studies MESF visualizations by compositing identified relevant spatial autocorrelation components, examining a particular Van Gogh painting for the first time, and more intensely re-examining several paintings already evaluated with MESF techniques. Findings include: painting replications solely based upon their spatial autocorrelation components as captured and visualized by certain eigenvectors are visibly indistinguishable from their original counterparts; and, spatial autocorrelation supplies measurements allowing a differentiation of paintings, a potentially valuable discovery for art history. GRAPHICAL ABSTRACT