{"title":"Keynote: A new Silicon Age 4.0: Generating semiconductor-intelligence paradigm with a Virtual Moore's Law Economics and Heterogeneous technologies","authors":"Nicky Liu","doi":"10.1109/ISLPED.2017.8009149","DOIUrl":null,"url":null,"abstract":"The future of the silicon-based economy will not be as pessimistic as some commentators have argued, given their predictions of the end of Moore's Law Economy (ME) by the early 2020s. On the contrary, a Virtual Moore's Law Economy (VME) will develop and thrive, advancing innovation by a new Silicon Way of producing various application-driven Heterogeneous Integrated (HI) Nano-systems by optimization of physics, materials, devices, circuits/chips, software and systems to enable exciting applications for business growth. The semiconductor industry will enjoy sufficient financial returns from new application and system-product sales, even considering more expensive silicon investment. Such a technological approach based on a (Function × Value)-Scaling Down-Plus-Up Methodology, in addition to Linear-Scaling, Area-Scaling and Volumetric-Scaling Methodologies, can fundamentally change the way of thinking and execution toward optimizing coherently both technology definition and final system design with an holistic HIDAS (HI Design/Architecture/System) method. This will drive IC scaling to an effective 1-Nanometer Realm, stimulating a thriving silicon industry which can have at least 30 more years of growth toward a 1 trillion-dollar size.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2017.8009149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The future of the silicon-based economy will not be as pessimistic as some commentators have argued, given their predictions of the end of Moore's Law Economy (ME) by the early 2020s. On the contrary, a Virtual Moore's Law Economy (VME) will develop and thrive, advancing innovation by a new Silicon Way of producing various application-driven Heterogeneous Integrated (HI) Nano-systems by optimization of physics, materials, devices, circuits/chips, software and systems to enable exciting applications for business growth. The semiconductor industry will enjoy sufficient financial returns from new application and system-product sales, even considering more expensive silicon investment. Such a technological approach based on a (Function × Value)-Scaling Down-Plus-Up Methodology, in addition to Linear-Scaling, Area-Scaling and Volumetric-Scaling Methodologies, can fundamentally change the way of thinking and execution toward optimizing coherently both technology definition and final system design with an holistic HIDAS (HI Design/Architecture/System) method. This will drive IC scaling to an effective 1-Nanometer Realm, stimulating a thriving silicon industry which can have at least 30 more years of growth toward a 1 trillion-dollar size.