Fermi-function integrals for finding relative beta-group intensities

George P. Ford, Darleane C. Hoffman
{"title":"Fermi-function integrals for finding relative beta-group intensities","authors":"George P. Ford,&nbsp;Darleane C. Hoffman","doi":"10.1016/S0550-306X(65)80008-8","DOIUrl":null,"url":null,"abstract":"<div><p>Values are presented of the definite integral <em>I</em>(<em>Z, T</em><sub>max</sub>), which is related to the relative number, <em>N</em>, of electrons in a β<sup>−</sup>-group with end point energy <em>T</em><sub>max</sub> by the simple expression <em>N</em> = <em>a</em><sup>2</sup><em>T</em><sub>max</sub><sup>2</sup><em>I</em>(<em>Z</em>, <em>T</em><sub>max</sub>), where <em>a</em> is the <em>y</em>-intercept in the Fermi-Kurie plot, <span><span><span><math><mrow><mi>I</mi><mo>(</mo><mi>Z</mi><mo>,</mo><msub><mi>T</mi><mrow><mi>max</mi></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mrow><msub><mi>T</mi><mo>max</mo></msub></mrow></msubsup><mi>f</mi><mo>(</mo><mi>Z</mi><mo>,</mo><mi>T</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>T</mi><mo>)</mo><mi>d</mi><mi>T</mi><mo>,</mo></mrow></math></span></span></span></p><p>where <em>f</em> is the Fermi function and <span><span><span><math><mrow><mi>h</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>T</mi><mo>/</mo><msub><mi>T</mi><mrow><mi>max</mi></mrow></msub><mo>)</mo></mrow><mstyle><mn>2</mn></mstyle></msup><msup><mrow><mo>[</mo><mi>T</mi><mo>(</mo><mi>T</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>]</mo></mrow><mrow><mstyle><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mstyle></mrow></msup><msubsup><mi>T</mi><mrow><mi>max</mi></mrow><mrow><mstyle><mo>−</mo><mn>2</mn></mstyle></mrow></msubsup><mo>.</mo></mrow></math></span></span></span></p><p>The <em>Z</em>-ranges is 10(1)109; the <em>T</em><sub>max</sub>-range is 0.1(0.05)0.4, 0.5(0.1)5.2.</p></div>","PeriodicalId":100967,"journal":{"name":"Nuclear Data Sheets. Section A","volume":"1 ","pages":"Pages 411-433"},"PeriodicalIF":0.0000,"publicationDate":"1965-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0550-306X(65)80008-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Data Sheets. Section A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550306X65800088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Values are presented of the definite integral I(Z, Tmax), which is related to the relative number, N, of electrons in a β-group with end point energy Tmax by the simple expression N = a2Tmax2I(Z, Tmax), where a is the y-intercept in the Fermi-Kurie plot, I(Z,Tmax)=0Tmaxf(Z,T)h(T)dT,

where f is the Fermi function and h(T)=(T+1)(1T/Tmax)2[T(T+2)]1/2Tmax2.

The Z-ranges is 10(1)109; the Tmax-range is 0.1(0.05)0.4, 0.5(0.1)5.2.

寻找相对群强度的费米函数积分
用简单的表达式N = a2Tmax2I(Z, Tmax)表示与端点能量为Tmax的β -群中电子的相对数目N有关的定积分I(Z,Tmax)的值,其中a是费米-居里图中的y截距,I(Z,Tmax)=∫0Tmaxf(Z,T)h(T)dT,其中f是费米函数,h(T)=(T+1)(1−T/Tmax)2[T(T+2)]−1/ 2tmax−2。z范围为10(1)109;Tmax-range为0.1(0.05)0.4,0.5(0.1)5.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信