Detecting Stale Data in Wikipedia Infoboxes

Malte Barth, Tibor Bleidt, Martin Büßemeyer, Fabian Heseding, Niklas Köhnecke, Tobias Bleifuß, Leon Bornemann, D. Kalashnikov, Felix Naumann, D. Srivastava
{"title":"Detecting Stale Data in Wikipedia Infoboxes","authors":"Malte Barth, Tibor Bleidt, Martin Büßemeyer, Fabian Heseding, Niklas Köhnecke, Tobias Bleifuß, Leon Bornemann, D. Kalashnikov, Felix Naumann, D. Srivastava","doi":"10.48786/edbt.2023.36","DOIUrl":null,"url":null,"abstract":"Today’s fast-paced society is increasingly reliant on correct and up-to-date data. Wikipedia is the world’s most popular source of knowledge, and its infoboxes contain concise semi-structured data with important facts about a page’s topic. However, these data are not always up-to-date: we do not expect Wikipedia editors to update items at the moment their true values change. Also, many pages might not be well maintained and users might forget to update the data, e.g., when they are on holiday. To detect stale data in Wikipedia infoboxes, we combine cor-relation-based and rule-based approaches trained on different temporal granularities, based on all infobox changes over 15 years of English Wikipedia. We are able to predict 8 . 19% of all changes with a precision of 89 . 69% over a whole year, thus meet-ing our target precision of","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"29 1","pages":"450-456"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today’s fast-paced society is increasingly reliant on correct and up-to-date data. Wikipedia is the world’s most popular source of knowledge, and its infoboxes contain concise semi-structured data with important facts about a page’s topic. However, these data are not always up-to-date: we do not expect Wikipedia editors to update items at the moment their true values change. Also, many pages might not be well maintained and users might forget to update the data, e.g., when they are on holiday. To detect stale data in Wikipedia infoboxes, we combine cor-relation-based and rule-based approaches trained on different temporal granularities, based on all infobox changes over 15 years of English Wikipedia. We are able to predict 8 . 19% of all changes with a precision of 89 . 69% over a whole year, thus meet-ing our target precision of
检测维基百科信息框中的陈旧数据
当今快节奏的社会越来越依赖于正确和最新的数据。维基百科是世界上最受欢迎的知识来源,它的信息框包含简洁的半结构化数据,其中包含有关页面主题的重要事实。然而,这些数据并不总是最新的:我们不期望维基百科编辑在条目的真实价值发生变化时更新条目。此外,许多页面可能没有得到很好的维护,用户可能忘记更新数据,例如,当他们在度假时。为了检测维基百科信息框中的陈旧数据,我们结合了基于不同时间粒度的基于关联和基于规则的方法,基于15年来英文维基百科中所有信息框的变化。我们能够预测。19%的变化,精度为89。,达到了我们的目标精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信