Modeling of Transient Pressure Response for CO2 Flooding Process by Integrating Convection and Diffusion Driven Mass Transfer

Jianli Li, Gang Zhao
{"title":"Modeling of Transient Pressure Response for CO2 Flooding Process by Integrating Convection and Diffusion Driven Mass Transfer","authors":"Jianli Li, Gang Zhao","doi":"10.7569/jnge.2017.692501","DOIUrl":null,"url":null,"abstract":"Abstract Traditional well test models for CO2 flooding neglect dynamic mass transfer and over-simplify transient viscosity in a transition zone, making them unable to deal with more complicated and heterogeneous field situations. To eliminate this restriction/limitation, this study proposes a comprehensive transient pressure model that incorporates a convection– diffusion mass transfer process. It actually is an enhanced three-region composite model that includes CO2 bank, transition zone, and oil zone. Type curves are plotted and four flow regimes are identified: early radial flow, transition flow, pseudo-radial flow, and boundary-dominated flow. In addition, it is found that mass transfer mainly leads the transition flow regime to slower slope change, and pseudo radial flow regime with lower straight line compared with a case neglects the mass transfer in a transition zone. Moreover, it shows that a smaller injection rate and a longer injection period are better for viscosity reduction than a larger injection rate and a shorter injection period.","PeriodicalId":22694,"journal":{"name":"The Journal of Natural Gas Engineering","volume":"18 1","pages":"20 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Natural Gas Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7569/jnge.2017.692501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Traditional well test models for CO2 flooding neglect dynamic mass transfer and over-simplify transient viscosity in a transition zone, making them unable to deal with more complicated and heterogeneous field situations. To eliminate this restriction/limitation, this study proposes a comprehensive transient pressure model that incorporates a convection– diffusion mass transfer process. It actually is an enhanced three-region composite model that includes CO2 bank, transition zone, and oil zone. Type curves are plotted and four flow regimes are identified: early radial flow, transition flow, pseudo-radial flow, and boundary-dominated flow. In addition, it is found that mass transfer mainly leads the transition flow regime to slower slope change, and pseudo radial flow regime with lower straight line compared with a case neglects the mass transfer in a transition zone. Moreover, it shows that a smaller injection rate and a longer injection period are better for viscosity reduction than a larger injection rate and a shorter injection period.
基于对流和扩散传质积分的CO2驱油过程瞬态压力响应建模
传统的CO2驱试井模型忽略了动态传质,过于简化了过渡层的瞬态粘度,无法处理更复杂、非均质油田的情况。为了消除这一限制,本研究提出了一个包含对流-扩散传质过程的综合瞬态压力模型。它实际上是一个包括CO2库、过渡带和油区在内的增强型三区复合模型。绘制了类型曲线,并确定了四种流动形式:早期径向流动、过渡流动、伪径向流动和边界主导流动。此外,还发现传质主要导致过渡流型的斜率变化较慢,而直线较低的伪径向流型忽略了过渡区的传质。此外,较小的喷射速度和较长的喷射周期比较大的喷射速度和较短的喷射周期对降粘效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信