Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes

L. Bozzelli, A. Montanari, A. Peron, P. Sala
{"title":"Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes","authors":"L. Bozzelli, A. Montanari, A. Peron, P. Sala","doi":"10.4230/LIPIcs.TIME.2021.9","DOIUrl":null,"url":null,"abstract":"In this paper, we establish Pspace-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality ⟨E⟩, for the “suffix” relation on pairs of intervals, and modality ⟨D⟩, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the Expspace upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (⟨E⟩) or, symmetrically, the modality for prefixes (⟨B⟩) to the logic of sub-intervals (featuring only ⟨D⟩). 2012 ACM Subject Classification Theory of computation → Logic and verification","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2021.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we establish Pspace-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality ⟨E⟩, for the “suffix” relation on pairs of intervals, and modality ⟨D⟩, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the Expspace upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (⟨E⟩) or, symmetrically, the modality for prefixes (⟨B⟩) to the logic of sub-intervals (featuring only ⟨D⟩). 2012 ACM Subject Classification Theory of computation → Logic and verification
子区间和后缀时间逻辑的空间完备性
在本文中,我们在齐性假设下,为区间对上的“词尾”关系和“子区间”关系的模态⟨D⟩为Halpern和Shoham区间逻辑的片段建立了有限可满足性的p空间完备性和模型检验问题。结果显着改善了最近为同一片段建立的Expspace上界,并证明了一个相当令人惊讶的事实,即当我们将后缀的模态(⟨E⟩)或对称地将前缀的模态(⟨B⟩)添加到子间隔的逻辑(仅以⟨D⟩为特征)时,所考虑的问题的复杂性不会改变。2012 ACM学科分类:计算理论→逻辑和验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信