Tight Bounds for Learning a Mixture of Two Gaussians

Moritz Hardt, Eric Price
{"title":"Tight Bounds for Learning a Mixture of Two Gaussians","authors":"Moritz Hardt, Eric Price","doi":"10.1145/2746539.2746579","DOIUrl":null,"url":null,"abstract":"We consider the problem of identifying the parameters of an unknown mixture of two arbitrary d-dimensional gaussians from a sequence of independent random samples. Our main results are upper and lower bounds giving a computationally efficient moment-based estimator with an optimal convergence rate, thus resolving a problem introduced by Pearson (1894). Denoting by σ2 the variance of the unknown mixture, we prove that Θ(σ12) samples are necessary and sufficient to estimate each parameter up to constant additive error when d=1. Our upper bound extends to arbitrary dimension d>1 up to a (provably necessary) logarithmic loss in d using a novel---yet simple---dimensionality reduction technique. We further identify several interesting special cases where the sample complexity is notably smaller than our optimal worst-case bound. For instance, if the means of the two components are separated by Ω(σ) the sample complexity reduces to O(σ2) and this is again optimal. Our results also apply to learning each component of the mixture up to small error in total variation distance, where our algorithm gives strong improvements in sample complexity over previous work.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

We consider the problem of identifying the parameters of an unknown mixture of two arbitrary d-dimensional gaussians from a sequence of independent random samples. Our main results are upper and lower bounds giving a computationally efficient moment-based estimator with an optimal convergence rate, thus resolving a problem introduced by Pearson (1894). Denoting by σ2 the variance of the unknown mixture, we prove that Θ(σ12) samples are necessary and sufficient to estimate each parameter up to constant additive error when d=1. Our upper bound extends to arbitrary dimension d>1 up to a (provably necessary) logarithmic loss in d using a novel---yet simple---dimensionality reduction technique. We further identify several interesting special cases where the sample complexity is notably smaller than our optimal worst-case bound. For instance, if the means of the two components are separated by Ω(σ) the sample complexity reduces to O(σ2) and this is again optimal. Our results also apply to learning each component of the mixture up to small error in total variation distance, where our algorithm gives strong improvements in sample complexity over previous work.
学习两个高斯函数混合的紧界
我们考虑从一系列独立随机样本中识别两个任意d维高斯函数的未知混合物的参数问题。我们的主要结果是上界和下界,给出了一个具有最佳收敛率的计算效率的基于矩的估计器,从而解决了Pearson(1894)引入的问题。用σ2表示未知混合物的方差,证明了Θ(σ12)样本对于估计d=1时各参数的加性误差是充分必要的。我们的上界扩展到任意维d>1,直到使用一种新颖但简单的降维技术d中的对数损失(可证明是必要的)。我们进一步确定了几个有趣的特殊情况,其中样本复杂度明显小于我们的最优最差情况边界。例如,如果两个组成部分的平均值由Ω(σ)分开,则样本复杂度降低到O(σ2),这也是最优的。我们的结果也适用于学习混合物的每个组成部分,直到总变异距离的小误差,其中我们的算法在样本复杂性方面比以前的工作有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信