A Complex-Valued Encoding Multichain Seeker Optimization Algorithm for Engineering Problems

Sci. Program. Pub Date : 2022-01-06 DOI:10.1155/2022/8249030
Shaomi Duan, Huilong Luo, Haipeng Liu
{"title":"A Complex-Valued Encoding Multichain Seeker Optimization Algorithm for Engineering Problems","authors":"Shaomi Duan, Huilong Luo, Haipeng Liu","doi":"10.1155/2022/8249030","DOIUrl":null,"url":null,"abstract":"This article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"28 1","pages":"8249030:1-8249030:35"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8249030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.
工程问题的复值编码多链导引头优化算法
针对工程优化问题,提出一种复值编码多链导引头优化算法(CMSOA)。导引头优化算法(SOA)采用复值编码策略和多链策略。这些策略增强了个体的多样性,增强了局部搜索能力,避免陷入局部最优,是有影响力的全局优化策略。本文选取了15个基准函数、4个比例积分导数(PID)控制参数模型和6个约束工程问题进行测试。实验结果表明,该方法可用于基准函数、PID控制参数优化和约束工程问题的优化。与粒子群优化算法(PSO)、基于遗传算法(SA_GA)的模拟退火算法(SA_GA)、引力搜索算法(GSA)、正弦余弦算法(SCA)、多元宇宙优化器(MVO)和导引头优化算法(SOA)相比,CMSOA的优化能力和鲁棒性均优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信