{"title":"General Zagreb Adjacency Matrix","authors":"Zhen Lin","doi":"10.47443/cm.2022.045","DOIUrl":null,"url":null,"abstract":"Let A ( G ) and D ( G ) be the adjacency matrix and the degree diagonal matrix of a graph G , respectively. For any real number α , the general Zagreb adjacency matrix of G is defined as Z α ( G ) = D α ( G )+ A ( G ) . In this paper, the positive semidefiniteness, spectral moment, coefficients of characteristic polynomials, and energy of the general Zagreb adjacency matrix are studied. The obtained results extend the corresponding results concerning the signless Laplacian matrix, the vertex Zagreb adjacency matrix, and the forgotten adjacency matrix.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2022.045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let A ( G ) and D ( G ) be the adjacency matrix and the degree diagonal matrix of a graph G , respectively. For any real number α , the general Zagreb adjacency matrix of G is defined as Z α ( G ) = D α ( G )+ A ( G ) . In this paper, the positive semidefiniteness, spectral moment, coefficients of characteristic polynomials, and energy of the general Zagreb adjacency matrix are studied. The obtained results extend the corresponding results concerning the signless Laplacian matrix, the vertex Zagreb adjacency matrix, and the forgotten adjacency matrix.
期刊介绍:
Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.