Ziran Chen, Mengjia Huang, Zhi Huang, Han Wang, Le He, Meng Zhang
{"title":"Design of Ku-Band Low Noise Amplifier for Satellite Communication Applications","authors":"Ziran Chen, Mengjia Huang, Zhi Huang, Han Wang, Le He, Meng Zhang","doi":"10.1109/ICICM54364.2021.9660315","DOIUrl":null,"url":null,"abstract":"A Ku-band low noise amplifier (LNA) is presented in this paper, which is suitable for the Ku-band satellite communication receiving channel. The miniaturized LNA is established based on the micro-system design principle. The two-stage hetero-junction FET cascade structure is adopted. Based on a reasonable selection of matching structure, a low-pass filter (LPF) is added to suppress out-of-band interference. And the EDA software is applied to optimize the matching circuit. According to the results, the LNA achieves a noise Figure (NF) less than 1.55dB and a gain greater than 24dB in the working frequency range of 12GHz to 13GHz, meanwhile the input and output are well matched.","PeriodicalId":6693,"journal":{"name":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"89 1","pages":"342-346"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICM54364.2021.9660315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Ku-band low noise amplifier (LNA) is presented in this paper, which is suitable for the Ku-band satellite communication receiving channel. The miniaturized LNA is established based on the micro-system design principle. The two-stage hetero-junction FET cascade structure is adopted. Based on a reasonable selection of matching structure, a low-pass filter (LPF) is added to suppress out-of-band interference. And the EDA software is applied to optimize the matching circuit. According to the results, the LNA achieves a noise Figure (NF) less than 1.55dB and a gain greater than 24dB in the working frequency range of 12GHz to 13GHz, meanwhile the input and output are well matched.