Online High Resolution Stochastic Radiation Radar Imaging Using Sparse Covariance Fitting

Yongchao Zhang, Deqing Mao, Y. Bu, Junjie Wu, Yulin Huang, A. Jakobsson
{"title":"Online High Resolution Stochastic Radiation Radar Imaging Using Sparse Covariance Fitting","authors":"Yongchao Zhang, Deqing Mao, Y. Bu, Junjie Wu, Yulin Huang, A. Jakobsson","doi":"10.1109/IGARSS.2019.8899156","DOIUrl":null,"url":null,"abstract":"Stochastic radiation radar (SRR) systems allow for the forming of radar images by transmitting stochastic signals to form the stochastic radiation field and thereby increase the target observation information to achieve high resolution imaging. In this paper, we examine the use of the online SParse Iterative Covariance-based Estimation (SPICE) algorithm to suppress the noise and improve the operational efficiency. The SPICE algorithm is based on a weighted covariance fitting criterion, and has recently been generalized to allow for an improved reconstruction performance. The used online extension can take advantage of echoes non-correlation along time, allowing for updating the imaging result through successive echo sequences. The simulation results verify the superior performance of the resulting estimator as compared to other recent SRR imaging methods.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"35 1","pages":"8562-8565"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stochastic radiation radar (SRR) systems allow for the forming of radar images by transmitting stochastic signals to form the stochastic radiation field and thereby increase the target observation information to achieve high resolution imaging. In this paper, we examine the use of the online SParse Iterative Covariance-based Estimation (SPICE) algorithm to suppress the noise and improve the operational efficiency. The SPICE algorithm is based on a weighted covariance fitting criterion, and has recently been generalized to allow for an improved reconstruction performance. The used online extension can take advantage of echoes non-correlation along time, allowing for updating the imaging result through successive echo sequences. The simulation results verify the superior performance of the resulting estimator as compared to other recent SRR imaging methods.
稀疏协方差拟合的在线高分辨率随机辐射雷达成像
随机辐射雷达(SRR)系统通过发射随机信号形成随机辐射场,从而增加目标观测信息,实现高分辨率成像。在本文中,我们研究了使用在线稀疏迭代协方差估计(SPICE)算法来抑制噪声并提高操作效率。SPICE算法基于加权协方差拟合准则,最近得到了推广,以提高重建性能。所使用的在线扩展可以利用回声随时间的不相关性,允许通过连续的回波序列更新成像结果。仿真结果验证了所得到的估计器与其他SRR成像方法相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信