{"title":"Divisors computing minimal log discrepancies on lc surfaces","authors":"Jihao Liu, Lingyao Xie","doi":"10.1017/S0305004123000051","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(X\\ni x,B)$\n be an lc surface germ. If \n$X\\ni x$\n is klt, we show that there exists a divisor computing the minimal log discrepancy of \n$(X\\ni x,B)$\n that is a Kollár component of \n$X\\ni x$\n . If \n$B\\not=0$\n or \n$X\\ni x$\n is not Du Val, we show that any divisor computing the minimal log discrepancy of \n$(X\\ni x,B)$\n is a potential lc place of \n$X\\ni x$\n . This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"27 1","pages":"107 - 128"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let
$(X\ni x,B)$
be an lc surface germ. If
$X\ni x$
is klt, we show that there exists a divisor computing the minimal log discrepancy of
$(X\ni x,B)$
that is a Kollár component of
$X\ni x$
. If
$B\not=0$
or
$X\ni x$
is not Du Val, we show that any divisor computing the minimal log discrepancy of
$(X\ni x,B)$
is a potential lc place of
$X\ni x$
. This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.
摘要设$(X\ni X,B)$是一个lc曲面元。如果$X\ni X $是klt,我们证明存在一个计算$(X\ni X,B)$的最小对数差异的除数,该除数是$X\ni X $的Kollár分量。如果$B\not=0$或$X\ni X $不是Du Val,我们证明任何计算$(X\ni X,B)$的最小对数差异的除数都是$X\ni X $的潜在lc位。这扩展了Blum和Kawakita的结果,他们独立地表明,在光滑表面上计算最小对数差异的任何除数都是潜在的lc位置。
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.