Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation

Minyung Song, K. Daniels, A. Kiani, Sahar Rashidnadimi, M. Dickey
{"title":"Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation","authors":"Minyung Song, K. Daniels, A. Kiani, Sahar Rashidnadimi, M. Dickey","doi":"10.1002/aisy.202100024","DOIUrl":null,"url":null,"abstract":"Herein, this progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium‐based alloys. These liquid alloys have the largest interfacial tension of any liquid at room temperature. The ability to modulate the tension offers the possibility to create forces that change the shape and position of small volumes of liquid metal. It has been known since the late 1800s that electrocapillarity—the use of potential to modulate the electric double layer on the surface of metals in electrolyte—lowers the interfacial tension of liquid metals. This phenomenon, however, can only achieve modest changes in interfacial tension since it is limited to potentials that avoid Faradaic reactions. A recent discovery suggests reactions driven by the electrochemical oxidation of gallium alloys cause the interfacial tension to decrease from ≈500 mN m−1 at 0 V to ≈0 mN m−1 at less than 1 V. This change in interfacial tension is reversible, controllable, and goes well‐beyond what is possible via conventional electrocapillarity or surfactants. This report aims to introduce beginners to this field and address misconceptions. The report discusses applications that utilize modulations in interfacial tension of liquid metal and concludes with remaining opportunities and challenges needing further investigation.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Herein, this progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium‐based alloys. These liquid alloys have the largest interfacial tension of any liquid at room temperature. The ability to modulate the tension offers the possibility to create forces that change the shape and position of small volumes of liquid metal. It has been known since the late 1800s that electrocapillarity—the use of potential to modulate the electric double layer on the surface of metals in electrolyte—lowers the interfacial tension of liquid metals. This phenomenon, however, can only achieve modest changes in interfacial tension since it is limited to potentials that avoid Faradaic reactions. A recent discovery suggests reactions driven by the electrochemical oxidation of gallium alloys cause the interfacial tension to decrease from ≈500 mN m−1 at 0 V to ≈0 mN m−1 at less than 1 V. This change in interfacial tension is reversible, controllable, and goes well‐beyond what is possible via conventional electrocapillarity or surfactants. This report aims to introduce beginners to this field and address misconceptions. The report discusses applications that utilize modulations in interfacial tension of liquid metal and concludes with remaining opportunities and challenges needing further investigation.
电化学氧化对液态金属界面张力的调节
本文综述了电化学氧化调节镓基合金界面张力的最新研究进展。这些液态合金在室温下具有所有液体中最大的界面张力。调节张力的能力提供了产生改变小体积液态金属形状和位置的力的可能性。自19世纪晚期以来,人们就知道电毛细管作用——利用电位调节电解液中金属表面的双电层——降低了液态金属的界面张力。然而,这种现象只能实现界面张力的适度变化,因为它仅限于避免法拉第反应的电位。最近的一项发现表明,由镓合金的电化学氧化驱动的反应导致界面张力从0 V时的≈500 mN m−1降至低于1 V时的≈0 mN m−1。这种界面张力的变化是可逆的、可控的,并且远远超出了传统的电毛细作用或表面活性剂所能达到的效果。本报告旨在向初学者介绍这一领域,并解决误解。该报告讨论了利用液态金属界面张力调制的应用,并总结了需要进一步研究的机会和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信