Rethinking reinforcement learning for cloud elasticity

K. Lolos, I. Konstantinou, Verena Kantere, N. Koziris
{"title":"Rethinking reinforcement learning for cloud elasticity","authors":"K. Lolos, I. Konstantinou, Verena Kantere, N. Koziris","doi":"10.1145/3127479.3131211","DOIUrl":null,"url":null,"abstract":"Cloud elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands, has been one of the greatest challenges in cloud computing. Approaches based on reinforcement learning have been proposed but they require a large number of states in order to model complex application behavior. In this work we propose a novel reinforcement learning approach that employs adaptive state space partitioning. The idea is to start from one state that represents the entire environment and partition this into finer-grained states adaptively to the observed workload and system behavior following a decision-tree approach. We explore novel statistical criteria and strategies that decide both the correct parameters and the appropriate time to perform the partitioning.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3131211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands, has been one of the greatest challenges in cloud computing. Approaches based on reinforcement learning have been proposed but they require a large number of states in order to model complex application behavior. In this work we propose a novel reinforcement learning approach that employs adaptive state space partitioning. The idea is to start from one state that represents the entire environment and partition this into finer-grained states adaptively to the observed workload and system behavior following a decision-tree approach. We explore novel statistical criteria and strategies that decide both the correct parameters and the appropriate time to perform the partitioning.
重新思考云弹性的强化学习
云弹性,即向应用程序动态分配资源以满足波动的工作负载需求,一直是云计算中的最大挑战之一。基于强化学习的方法已经被提出,但它们需要大量的状态来建模复杂的应用程序行为。在这项工作中,我们提出了一种采用自适应状态空间划分的新型强化学习方法。其思想是从代表整个环境的一个状态开始,并按照决策树方法,根据观察到的工作负载和系统行为自适应地将其划分为更细粒度的状态。我们探索新的统计标准和策略,决定正确的参数和适当的时间来执行分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信