Block principal component analysis for extraction of informative features for classification of hyperspectral images

I. Pestunov, P. V. Melnikov
{"title":"Block principal component analysis for extraction of informative features for classification of hyperspectral images","authors":"I. Pestunov, P. V. Melnikov","doi":"10.17516/1999-494x-2015-8-6-715-725","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to reduce the dimensionality of feature space for recognition of hyperspectral images. The method consists of dividing the spectral channels into blocks with high in-block correlation and the subsequent application of principal component analysis. It is shown that the proposed method allows to reduce the number of channels used in the classification by an order of magnitude with no significant degradation of recognition quality.","PeriodicalId":11548,"journal":{"name":"Engineering & Technologies","volume":"48 1","pages":"715-725"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1999-494x-2015-8-6-715-725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method to reduce the dimensionality of feature space for recognition of hyperspectral images. The method consists of dividing the spectral channels into blocks with high in-block correlation and the subsequent application of principal component analysis. It is shown that the proposed method allows to reduce the number of channels used in the classification by an order of magnitude with no significant degradation of recognition quality.
基于块主成分分析的高光谱图像分类信息特征提取
提出了一种用于高光谱图像识别的特征空间降维方法。该方法包括将光谱通道划分为块内相关性高的块,然后应用主成分分析。结果表明,该方法可以在不显著降低识别质量的情况下,将分类中使用的通道数量减少一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信