{"title":"A review on TIG cladding of engineering material for improving their surface property","authors":"K. Biswas, C. Sahoo","doi":"10.1088/2051-672X/acd6aa","DOIUrl":null,"url":null,"abstract":"Different components used in industries like power plant, petrochemical, automobile are subjected to severe wear and corrosion due to high temperature and pressure environments. Therefore, it is necessary to improve those components’ wear and corrosion resistance properties. Different processes like laser cladding, CVD, PVD, and thermal spraying are widely used for upgrading surface properties of material. In recent days, it has been found that many researchers investigated the performance of tungsten inert gas (TIG) welding for cladding of superior material like ceramics, metal etc on different substrate materials. TIG cladding can fulfil the requirements of industries by developing a quality cladded layer with low cost and high productivity. This research paper has made an effort to compile the literature related to TIG cladding process for improving substrate properties. It has been observed that the superior materials like titanium carbide(TiC), silicon carbide(SiC), tungsten carbide(WC), cobalt-based alloys, and nickel-based alloys have been successfully cladded using TIG welding process. Researchers have also observed adequate improvement in properties like microhardness and wear resistance of different grades of steel substrate material, like 304, 316 stainless steel, 1010, and 1020 low-carbon steel. The process is also successfully utilized for cladding of superior material on nonferrous metals like Al, Ti alloy. The TIG clad quality and performance rely on different process parameters like current, scan speed, and shielding gas flow rate and also the properties of coating and substrate material.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672X/acd6aa","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Different components used in industries like power plant, petrochemical, automobile are subjected to severe wear and corrosion due to high temperature and pressure environments. Therefore, it is necessary to improve those components’ wear and corrosion resistance properties. Different processes like laser cladding, CVD, PVD, and thermal spraying are widely used for upgrading surface properties of material. In recent days, it has been found that many researchers investigated the performance of tungsten inert gas (TIG) welding for cladding of superior material like ceramics, metal etc on different substrate materials. TIG cladding can fulfil the requirements of industries by developing a quality cladded layer with low cost and high productivity. This research paper has made an effort to compile the literature related to TIG cladding process for improving substrate properties. It has been observed that the superior materials like titanium carbide(TiC), silicon carbide(SiC), tungsten carbide(WC), cobalt-based alloys, and nickel-based alloys have been successfully cladded using TIG welding process. Researchers have also observed adequate improvement in properties like microhardness and wear resistance of different grades of steel substrate material, like 304, 316 stainless steel, 1010, and 1020 low-carbon steel. The process is also successfully utilized for cladding of superior material on nonferrous metals like Al, Ti alloy. The TIG clad quality and performance rely on different process parameters like current, scan speed, and shielding gas flow rate and also the properties of coating and substrate material.
期刊介绍:
An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.