Inverse rate-dependent Prandtl-Ishlinskii operators and applications

Pub Date : 2023-02-09 DOI:10.21136/AM.2023.0231-22
Mohammad Al Janaideh, Pavel Krejčí, Giselle Antunes Monteiro
{"title":"Inverse rate-dependent Prandtl-Ishlinskii operators and applications","authors":"Mohammad Al Janaideh,&nbsp;Pavel Krejčí,&nbsp;Giselle Antunes Monteiro","doi":"10.21136/AM.2023.0231-22","DOIUrl":null,"url":null,"abstract":"<div><p>In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0231-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.

分享
查看原文
逆速率相关Prandtl-Ishlinskii算子及其应用
在过去的几年中,我们观察到对速率相关滞后模型的兴趣增加,以表征智能执行器中复杂的时间相关非线性。将速率依赖性纳入Prandtl-Ishlinskii模型的一种自然方法是将其视为游戏算子的线性组合,其阈值是时间的函数。在这项工作中,我们提出了将率相关的Prandtl-Ishlinskii算子类扩展到具有时间相关阈值的游戏算子的整个连续体的情况。证明了解析反演公式的存在性,并说明了其在逆补偿误差界研究中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信