{"title":"UNDER LOCK AND KEY: A PROOF SYSTEM FOR A MULTIMODAL LOGIC","authors":"G. A. Kavvos, Daniel Gratzer","doi":"10.1017/bsl.2023.14","DOIUrl":null,"url":null,"abstract":"Abstract We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"6 1","pages":"264 - 293"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.