Multistage attention network for human pose estimation

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingyang Zhou, Guangzhao Wen, Yu Zhang, Xin Geng
{"title":"Multistage attention network for human pose estimation","authors":"Jingyang Zhou, Guangzhao Wen, Yu Zhang, Xin Geng","doi":"10.1117/1.JEI.31.6.063001","DOIUrl":null,"url":null,"abstract":"Abstract. Human pose estimation is a fundamental yet challenging task in computer vision. Although many methods have achieved significant improvement, they are still insufficient for the fusion of feature maps at different stages, such as the stacked hourglass network (SHNet). The SHNet is a classic human pose estimation network that extracts multiscale features through stacked multistage downsampling and upsampling operations. We propose a multistage attention mechanism to fuse the multistage feature maps. Furthermore, we apply it in the SHNet to propose a multistage attention network (MANet). In the experiments, we demonstrated the effectiveness of MANet in human pose estimation on the common objects in context dataset and the MPII human pose dataset.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"15 1","pages":"063001 - 063001"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.JEI.31.6.063001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Human pose estimation is a fundamental yet challenging task in computer vision. Although many methods have achieved significant improvement, they are still insufficient for the fusion of feature maps at different stages, such as the stacked hourglass network (SHNet). The SHNet is a classic human pose estimation network that extracts multiscale features through stacked multistage downsampling and upsampling operations. We propose a multistage attention mechanism to fuse the multistage feature maps. Furthermore, we apply it in the SHNet to propose a multistage attention network (MANet). In the experiments, we demonstrated the effectiveness of MANet in human pose estimation on the common objects in context dataset and the MPII human pose dataset.
基于多阶段注意力网络的人体姿态估计
摘要人体姿态估计是计算机视觉中的一项基本而又具有挑战性的任务。虽然许多方法已经取得了显著的进步,但对于不同阶段的特征图融合仍然存在不足,如堆叠沙漏网络(SHNet)。SHNet是一种经典的人体姿态估计网络,它通过叠加的多级下采样和上采样操作来提取多尺度特征。我们提出了一种多阶段注意机制来融合多阶段特征图。此外,我们将其应用于SHNet中,提出了一个多阶段注意力网络(MANet)。在实验中,我们在上下文数据集和MPII人体姿态数据集上验证了MANet在人体姿态估计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信