Determination of the Mineral Composition of the Lake Bottom Sediments by X-Ray Diffraction Method and Physico-Chemical Modelling

IF 0.4 Q4 CHEMISTRY, MULTIDISCIPLINARY
Р.В. Смелый, Елена Канева, А.В. Ощепкова, В.А. Бычинский, Т.С. Айсуева, А А Щетников, Г.В. Пашкова, И.С. Якимов, А.Л. Финкельштейн, R. Smelyy, E. Kaneva, A. Oshchepkova, V. Bychinskii, T. S. Aisueva, Aleksandr А. Shchetnikov, G. Pashkova, I. Yakimov, Aleksandr L. Finkelshtein
{"title":"Determination of the Mineral Composition of the Lake Bottom Sediments by X-Ray Diffraction Method and Physico-Chemical Modelling","authors":"Р.В. Смелый, Елена Канева, А.В. Ощепкова, В.А. Бычинский, Т.С. Айсуева, А А Щетников, Г.В. Пашкова, И.С. Якимов, А.Л. Финкельштейн, R. Smelyy, E. Kaneva, A. Oshchepkova, V. Bychinskii, T. S. Aisueva, Aleksandr А. Shchetnikov, G. Pashkova, I. Yakimov, Aleksandr L. Finkelshtein","doi":"10.17516/1998-2836-0135","DOIUrl":null,"url":null,"abstract":"The paper reports comparison of three approaches to define the contents of minerals and mineral groups in the carbonate-silicate lake bottom sediments. The two approaches are based on the method of X-ray powder diffraction. The first one treats with the Rietveld Method in the software DIFFRAC Plus diffractometer D8 Advance (PDF-2 database). The second one uses the method of reference intensities (corundum ratios) and optimization of the model powder patterns from the X-ray phase standards of PDF-2 database and equations of the element balance with regularization of the least square functional. The third approach of physic-chemical modeling selects probable single mineral and multi-component phases through modelling the sold solutions, and it uses the data on the element composition obtained by XRF technique, as well as the data of X-ray diffraction on the qualitative mineral composition. Thirty samples of bottom sediment cores taken in the Zun-Torey Lake in East Siberia were analyzed by the three approaches described herein. The contents of mineral groups (feldspars, quartz, clay minerals and carbonates) varied within the range 10-40 mass %. The discrepancies between obtained results show the standard deviation ranging from 2 to 9 mass %. A relative standard deviation commonly provides the value below 30 %, so such determinations could be considered quantitative ones. With regard to the acquired data, it is hard to prefer this or that approach. Available data was employed to assess the error of X-ray phase powder analysis in measuring the abundance of mineral groups in the carbonate-silicate sedimentary rocks in the absence of reference materials to compare with certified mineral composition","PeriodicalId":16999,"journal":{"name":"Journal of Siberian Federal University. Chemistry","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1998-2836-0135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The paper reports comparison of three approaches to define the contents of minerals and mineral groups in the carbonate-silicate lake bottom sediments. The two approaches are based on the method of X-ray powder diffraction. The first one treats with the Rietveld Method in the software DIFFRAC Plus diffractometer D8 Advance (PDF-2 database). The second one uses the method of reference intensities (corundum ratios) and optimization of the model powder patterns from the X-ray phase standards of PDF-2 database and equations of the element balance with regularization of the least square functional. The third approach of physic-chemical modeling selects probable single mineral and multi-component phases through modelling the sold solutions, and it uses the data on the element composition obtained by XRF technique, as well as the data of X-ray diffraction on the qualitative mineral composition. Thirty samples of bottom sediment cores taken in the Zun-Torey Lake in East Siberia were analyzed by the three approaches described herein. The contents of mineral groups (feldspars, quartz, clay minerals and carbonates) varied within the range 10-40 mass %. The discrepancies between obtained results show the standard deviation ranging from 2 to 9 mass %. A relative standard deviation commonly provides the value below 30 %, so such determinations could be considered quantitative ones. With regard to the acquired data, it is hard to prefer this or that approach. Available data was employed to assess the error of X-ray phase powder analysis in measuring the abundance of mineral groups in the carbonate-silicate sedimentary rocks in the absence of reference materials to compare with certified mineral composition
用x射线衍射法和物理化学模型测定湖底沉积物的矿物组成
本文报道了确定碳酸盐-硅酸盐湖底沉积物中矿物和矿物群含量的三种方法的比较。这两种方法都是基于x射线粉末衍射法。第一个是用软件DIFFRAC Plus衍射仪D8 Advance (PDF-2数据库)中的Rietveld方法进行处理。第二种方法采用参考强度(刚玉比)的方法,从PDF-2数据库的x射线相标准和最小二乘泛函正则化的元素平衡方程中优化模型粉末图案。第三种方法是物理化学建模,通过对出售溶液进行建模,选择可能的单矿物和多组分相,并利用XRF技术获得的元素组成数据和x射线衍射数据对矿物组成进行定性分析。本文采用三种方法对东西伯利亚Zun-Torey湖的30个底泥岩心样品进行了分析。矿物群(长石、石英、粘土矿物和碳酸盐)的含量在10 ~ 40质量%之间变化。所得结果之间的差异表明,标准偏差范围为2 ~ 9质量%。相对标准偏差通常提供低于30%的值,因此这种测定可以被认为是定量的。对于所获得的数据,很难选择这种或那种方法。利用现有的数据,评估了x射线相粉末分析在没有标准物质的情况下测量碳酸盐-硅酸盐沉积岩中矿物群丰度的误差,以与认证的矿物组成进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信