Existence and stability analysis to the sequential coupled hybrid system of fractional differential equations with two different fractional derivatives
{"title":"Existence and stability analysis to the sequential coupled hybrid system of fractional differential equations with two different fractional derivatives","authors":"M. Houas, J. Alzabut, M. Khuddush","doi":"10.11121/ijocta.2023.1278","DOIUrl":null,"url":null,"abstract":"In this paper, we discussed the existence, uniqueness and Ulam-type stability of solutions for sequential coupled hybrid fractional differential equations with two derivatives. The uniqueness of solutions is established by means of Banach's contraction mapping principle, while the existence of solutions is derived from Leray-Schauder's alternative fixed point theorem. Further, the Ulam-type stability of the addressed problem is studied. Finally, an example is provided to check the validity of our obtained results.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discussed the existence, uniqueness and Ulam-type stability of solutions for sequential coupled hybrid fractional differential equations with two derivatives. The uniqueness of solutions is established by means of Banach's contraction mapping principle, while the existence of solutions is derived from Leray-Schauder's alternative fixed point theorem. Further, the Ulam-type stability of the addressed problem is studied. Finally, an example is provided to check the validity of our obtained results.