{"title":"Usability of fiber Bragg grating sensors for the fatigue life monitoring of overhead transmission lines","authors":"Xinbo Hang, Han Zhang, Yu Zhao","doi":"10.1109/CMD.2018.8535970","DOIUrl":null,"url":null,"abstract":"Fretting fatigue of transmission lines, caused by Aeolian vibration, always leads to catastrophic failure of conductors. The fatigue life monitoring of overhead transmission lines is an effective method to foresee strands broken of the conductor. Fatigue severity is usually expressed by alternating bending stress which occurs in the vicinity of suspension clamps during vibration. Given that it is hard to measure the fatigue stress directly, according to IEEE, alternating bending amplitude is recommended as a substitute measured parameter for fatigue life. In this paper, an on-line monitoring system based on a fiber-optic acceleration sensor is designed to analyze the fatigue life of overhead transmission lines in Aeolian vibration surveillance. Considering its superior performance of anti-electromagnetic interference, Fiber Bragg Grating (FBG) sensor is used to measure alternating bending amplitude of overhead transmission lines. And a Cumulative Fatigue Damage (CFD) method, which is based on alternating bending amplitude for vibration and the Stress-Cycle (S-N) curves, is proposed to calculate the fatigue life of overhead transmission lines. A case study of the one-month measurement data of Aeolian vibration for 1000kV Ultra-High Voltage (UHV) transmission lines is presented. Then an on-line monitoring system based on a fiber-optic acceleration sensor is designed to analyze the fatigue life of overhead transmission lines in Aeolian vibration surveillance.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fretting fatigue of transmission lines, caused by Aeolian vibration, always leads to catastrophic failure of conductors. The fatigue life monitoring of overhead transmission lines is an effective method to foresee strands broken of the conductor. Fatigue severity is usually expressed by alternating bending stress which occurs in the vicinity of suspension clamps during vibration. Given that it is hard to measure the fatigue stress directly, according to IEEE, alternating bending amplitude is recommended as a substitute measured parameter for fatigue life. In this paper, an on-line monitoring system based on a fiber-optic acceleration sensor is designed to analyze the fatigue life of overhead transmission lines in Aeolian vibration surveillance. Considering its superior performance of anti-electromagnetic interference, Fiber Bragg Grating (FBG) sensor is used to measure alternating bending amplitude of overhead transmission lines. And a Cumulative Fatigue Damage (CFD) method, which is based on alternating bending amplitude for vibration and the Stress-Cycle (S-N) curves, is proposed to calculate the fatigue life of overhead transmission lines. A case study of the one-month measurement data of Aeolian vibration for 1000kV Ultra-High Voltage (UHV) transmission lines is presented. Then an on-line monitoring system based on a fiber-optic acceleration sensor is designed to analyze the fatigue life of overhead transmission lines in Aeolian vibration surveillance.