{"title":"Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark","authors":"M. Hinga, Dale A. Williams","doi":"10.33012/navi.586","DOIUrl":null,"url":null,"abstract":"Autonomous cislunar spacecraft navigation is critical to mission success as communication to ground stations and access to global positioning system (GPS) signals could be lost. However, if the satellite has a camera of sufficient quality, geometric line-of-sight (unit vector) measurements can be made to known lunar landmarks (e.g., Tycho Crater) to provide observations that enable autonomous estimation of the position and velocity of the spacecraft. In this study, an improved batch gaussian initial orbit determination (IOD) differential correc-tor (DC) algorithm, based on the approximated values of the two-body f and g series, is applied to initialize a (non-conic based) circular restricted three body problem (CR3BP) extended Kalman Filter (EKF) navigator. This navigator collects geometric line-of-sight unit vector (angle only) measurements to a known location on the Moon to sequentially estimate the position and velocity of an observer spacecraft flying on an approximate southern L1 Halo orbit. In this study, it","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.586","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous cislunar spacecraft navigation is critical to mission success as communication to ground stations and access to global positioning system (GPS) signals could be lost. However, if the satellite has a camera of sufficient quality, geometric line-of-sight (unit vector) measurements can be made to known lunar landmarks (e.g., Tycho Crater) to provide observations that enable autonomous estimation of the position and velocity of the spacecraft. In this study, an improved batch gaussian initial orbit determination (IOD) differential correc-tor (DC) algorithm, based on the approximated values of the two-body f and g series, is applied to initialize a (non-conic based) circular restricted three body problem (CR3BP) extended Kalman Filter (EKF) navigator. This navigator collects geometric line-of-sight unit vector (angle only) measurements to a known location on the Moon to sequentially estimate the position and velocity of an observer spacecraft flying on an approximate southern L1 Halo orbit. In this study, it
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.