Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, J. Moon
{"title":"Scalable Network-Coded PBFT Consensus Algorithm","authors":"Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, J. Moon","doi":"10.1109/ISIT.2019.8849573","DOIUrl":null,"url":null,"abstract":"We suggest a general framework for network-coded Practical Byzantine Fault Tolerant (PBFT) consensus for enabling agreement among distributed nodes under Byzantine attacks. The suggested protocol generalizes existing replication and sharding schemes which are frequently used for consensus in current blockchain systems. Using the proposed algorithm, it is possible to reach a consensus when the available bandwidth is considerably smaller on individual links compared to that required for conventional schemes. It is shown that there exists an upper bound on the number of nodes that can participate in the protocol, given a maximum bandwidth constraint across all pairwise links. Furthermore, the protocol that achieves the upper bound is provided by using a set of constant weight codes.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"2007 1","pages":"857-861"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
We suggest a general framework for network-coded Practical Byzantine Fault Tolerant (PBFT) consensus for enabling agreement among distributed nodes under Byzantine attacks. The suggested protocol generalizes existing replication and sharding schemes which are frequently used for consensus in current blockchain systems. Using the proposed algorithm, it is possible to reach a consensus when the available bandwidth is considerably smaller on individual links compared to that required for conventional schemes. It is shown that there exists an upper bound on the number of nodes that can participate in the protocol, given a maximum bandwidth constraint across all pairwise links. Furthermore, the protocol that achieves the upper bound is provided by using a set of constant weight codes.